Menu Close

The-solution-of-sin-1-2a-1-a-2-cos-1-1-b-2-1-b-2-tan-1-2x-1-x-2-is-




Question Number 43179 by gunawan last updated on 08/Sep/18
The solution of  sin^(−1) (((2a)/(1+a^2 )))−cos^(−1) (((1−b^2 )/(1+b^2 )))=tan^(−1) (((2x)/(1−x^2 ))) is
$$\mathrm{The}\:\mathrm{solution}\:\mathrm{of} \\ $$$$\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2}{a}}{\mathrm{1}+{a}^{\mathrm{2}} }\right)−\mathrm{cos}^{−\mathrm{1}} \left(\frac{\mathrm{1}−{b}^{\mathrm{2}} }{\mathrm{1}+{b}^{\mathrm{2}} }\right)=\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}{x}}{\mathrm{1}−{x}^{\mathrm{2}} }\right)\:\mathrm{is} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 08/Sep/18
a=tanα    b=tanβ    x=tanγ  sin^(−1) (((2tanα)/(1+tan^2 α)))−cos^(−1) (((1−tan^2 β)/(1+tan^2 β)))=tan^(−1) (((2tanγ)/(1−tan^2 γ)))  sin^(−1) (sin2α)−cos^(−1) (cos2β)=tan^(−1) (tan2γ)  2α−2β=2γ  α−β=γ  tan(α−β)=tanγ  ((tanα−tanβ)/(1+tanαtanβ))=tanγ  ((a−b)/(1+ab))=x
$${a}={tan}\alpha\:\:\:\:{b}={tan}\beta\:\:\:\:{x}={tan}\gamma \\ $$$${sin}^{−\mathrm{1}} \left(\frac{\mathrm{2}{tan}\alpha}{\mathrm{1}+{tan}^{\mathrm{2}} \alpha}\right)−{cos}^{−\mathrm{1}} \left(\frac{\mathrm{1}−{tan}^{\mathrm{2}} \beta}{\mathrm{1}+{tan}^{\mathrm{2}} \beta}\right)={tan}^{−\mathrm{1}} \left(\frac{\mathrm{2}{tan}\gamma}{\mathrm{1}−{tan}^{\mathrm{2}} \gamma}\right) \\ $$$${sin}^{−\mathrm{1}} \left({sin}\mathrm{2}\alpha\right)−{cos}^{−\mathrm{1}} \left({cos}\mathrm{2}\beta\right)={tan}^{−\mathrm{1}} \left({tan}\mathrm{2}\gamma\right) \\ $$$$\mathrm{2}\alpha−\mathrm{2}\beta=\mathrm{2}\gamma \\ $$$$\alpha−\beta=\gamma \\ $$$${tan}\left(\alpha−\beta\right)={tan}\gamma \\ $$$$\frac{{tan}\alpha−{tan}\beta}{\mathrm{1}+{tan}\alpha{tan}\beta}={tan}\gamma \\ $$$$\frac{{a}−{b}}{\mathrm{1}+{ab}}={x} \\ $$$$ \\ $$
Commented by gunawan last updated on 08/Sep/18
thank you very much Sir
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 08/Sep/18
you are welcome...everybody is uploading self  photo...so you pls...
$${you}\:{are}\:{welcome}…{everybody}\:{is}\:{uploading}\:{self} \\ $$$${photo}…{so}\:{you}\:{pls}… \\ $$
Commented by gunawan last updated on 08/Sep/18
Commented by tanmay.chaudhury50@gmail.com last updated on 08/Sep/18
excellent...
$${excellent}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *