Menu Close

The-solution-of-the-equation-log-2-x-1-e-x-1-dx-pi-6-is-given-by-




Question Number 53697 by gunawan last updated on 25/Jan/19
The solution of the equation   ∫_(log 2) ^x   (1/( (√(e^x −1)))) dx= (π/6) is given by
Thesolutionoftheequationxlog21ex1dx=π6isgivenby
Commented by Abdo msup. last updated on 25/Jan/19
let A(x)=∫_(log2) ^x  (dt/( (√(e^t −1))))⇒A(x)=_(e^t =u)    ∫_2 ^e^x     (du/(u(√(u−1))))  =_((√(u−1))=α)      ∫_1 ^(√(e^x −1))    ((2αdα)/((1+α^2 )α)) =2 ∫_1 ^(√(e^x −1))  (dα/(1+α^2 ))  =2[arctan(α)]_1 ^(√(e^x −1)) =2{ arctan((√(e^x −1)))−(π/4)}  =2arctan((√(e^x −1)))−(π/2) so  A(x)=(π/6)  ⇔2 arctan((√(e^x −1)))=(π/2) +(π/6) ⇒  2 arctan((√(e^x −1)))=((4π)/6) =((2π)/3) ⇒  artan((√(e^x −1)))=(π/3) ⇒(√(e^x −1))=tan((π/3)) ⇒  (√(e^x −1))=(√3) ⇒e^x −1 =3 ⇒e^x =4 ⇒x =2ln(2) .
letA(x)=log2xdtet1A(x)=et=u2exduuu1=u1=α1ex12αdα(1+α2)α=21ex1dα1+α2=2[arctan(α)]1ex1=2{arctan(ex1)π4}=2arctan(ex1)π2soA(x)=π62arctan(ex1)=π2+π62arctan(ex1)=4π6=2π3artan(ex1)=π3ex1=tan(π3)ex1=3ex1=3ex=4x=2ln(2).

Leave a Reply

Your email address will not be published. Required fields are marked *