Menu Close

The-square-root-of-x-m-2-n-2-x-n-2-2mn-x-n-2-is-




Question Number 44231 by Mawitea Cck last updated on 24/Sep/18
The square root of  x^(m^2 −n^2 ) ∙ x^(n^2 +2mn) ∙ x^n^2   is
$$\mathrm{The}\:\mathrm{square}\:\mathrm{root}\:\mathrm{of}\:\:{x}^{{m}^{\mathrm{2}} −{n}^{\mathrm{2}} } \centerdot\:{x}^{{n}^{\mathrm{2}} +\mathrm{2}{mn}} \centerdot\:{x}^{{n}^{\mathrm{2}} } \:\mathrm{is} \\ $$
Answered by Joel578 last updated on 24/Sep/18
(√x^((m^2  − n^2 ) + (n^2  + 2mn) + n^2 ) )   = (√x^(m^2  + 2mn + n^2 ) )  = (√x^((m + n)^2 ) )  = (x^((m+n)^2 ) )^(1/2)   = x^(m + n)
$$\sqrt{{x}^{\left({m}^{\mathrm{2}} \:−\:{n}^{\mathrm{2}} \right)\:+\:\left({n}^{\mathrm{2}} \:+\:\mathrm{2}{mn}\right)\:+\:{n}^{\mathrm{2}} } }\: \\ $$$$=\:\sqrt{{x}^{{m}^{\mathrm{2}} \:+\:\mathrm{2}{mn}\:+\:{n}^{\mathrm{2}} } } \\ $$$$=\:\sqrt{{x}^{\left({m}\:+\:{n}\right)^{\mathrm{2}} } } \\ $$$$=\:\left({x}^{\left({m}+{n}\right)^{\mathrm{2}} } \right)^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$=\:{x}^{{m}\:+\:{n}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *