Menu Close

The-sum-of-first-10-terms-of-the-series-x-1-x-2-x-2-1-x-2-2-x-3-1-x-3-2-is-




Question Number 56424 by gunawan last updated on 16/Mar/19
The sum of first 10 terms of the series  (x+ (1/x))^2  + (x^2 + (1/x^2 ))^2  + (x^3 + (1/x^3 ))^2 +... is
$$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{first}\:\mathrm{10}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{the}\:\mathrm{series} \\ $$$$\left({x}+\:\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} \:+\:\left({x}^{\mathrm{2}} +\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)^{\mathrm{2}} \:+\:\left({x}^{\mathrm{3}} +\:\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\right)^{\mathrm{2}} +…\:\mathrm{is} \\ $$
Answered by mr W last updated on 16/Mar/19
a_n =(x^n +(1/x^n ))^2 =x^(2n) +2+(1/x^(2n) )  Σ_(n=1) ^(10) a_n =Σ_(n=1) ^(10) x^(2n) +10×2+Σ_(n=1) ^(10) (1/x^(2n) )  =((x^2 (1+x^(20) ))/(1+x^2 ))+20+(((1/x^2 )(1+(1/x^(20) )))/(1+(1/x^2 )))  =20+(((1+x^(20) )^2 )/(x^(18) (1+x^2 )))
$${a}_{{n}} =\left({x}^{{n}} +\frac{\mathrm{1}}{{x}^{{n}} }\right)^{\mathrm{2}} ={x}^{\mathrm{2}{n}} +\mathrm{2}+\frac{\mathrm{1}}{{x}^{\mathrm{2}{n}} } \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\mathrm{10}} {\sum}}{a}_{{n}} =\underset{{n}=\mathrm{1}} {\overset{\mathrm{10}} {\sum}}{x}^{\mathrm{2}{n}} +\mathrm{10}×\mathrm{2}+\underset{{n}=\mathrm{1}} {\overset{\mathrm{10}} {\sum}}\frac{\mathrm{1}}{{x}^{\mathrm{2}{n}} } \\ $$$$=\frac{{x}^{\mathrm{2}} \left(\mathrm{1}+{x}^{\mathrm{20}} \right)}{\mathrm{1}+{x}^{\mathrm{2}} }+\mathrm{20}+\frac{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{20}} }\right)}{\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \\ $$$$=\mathrm{20}+\frac{\left(\mathrm{1}+{x}^{\mathrm{20}} \right)^{\mathrm{2}} }{{x}^{\mathrm{18}} \left(\mathrm{1}+{x}^{\mathrm{2}} \right)} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *