Menu Close

The-sum-of-first-two-terms-of-an-infinite-GP-is-1-and-every-term-is-twice-the-sum-of-the-successive-terms-Its-first-term-is-




Question Number 46921 by 786786AM last updated on 02/Nov/18
The sum of first two terms of an infinite  GP is 1 and every term is twice the sum  of the successive terms. Its first term is
$$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{first}\:\mathrm{two}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{an}\:\mathrm{infinite} \\ $$$$\mathrm{GP}\:\mathrm{is}\:\mathrm{1}\:\mathrm{and}\:\mathrm{every}\:\mathrm{term}\:\mathrm{is}\:\mathrm{twice}\:\mathrm{the}\:\mathrm{sum} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{successive}\:\mathrm{terms}.\:\mathrm{Its}\:\mathrm{first}\:\mathrm{term}\:\mathrm{is} \\ $$
Answered by peter frank last updated on 02/Nov/18
a+ar=1.....(1)  a=2(ar+ar^2 +ar^3 +...)...(2)  from 1  a=(1/(1+r))    from 2  a=((2ar)/(1−r))  1−r=2r  r=(1/3)  substitute r in 1  a=(3/4)
$$\mathrm{a}+\mathrm{ar}=\mathrm{1}…..\left(\mathrm{1}\right) \\ $$$$\mathrm{a}=\mathrm{2}\left(\mathrm{ar}+\mathrm{ar}^{\mathrm{2}} +\mathrm{ar}^{\mathrm{3}} +…\right)…\left(\mathrm{2}\right) \\ $$$$\mathrm{from}\:\mathrm{1} \\ $$$$\mathrm{a}=\frac{\mathrm{1}}{\mathrm{1}+\mathrm{r}}\:\: \\ $$$$\mathrm{from}\:\mathrm{2} \\ $$$$\mathrm{a}=\frac{\mathrm{2ar}}{\mathrm{1}−\mathrm{r}} \\ $$$$\mathrm{1}−\mathrm{r}=\mathrm{2r} \\ $$$$\mathrm{r}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\mathrm{substitute}\:\mathrm{r}\:\mathrm{in}\:\mathrm{1} \\ $$$$\mathrm{a}=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *