Menu Close

The-sum-of-n-terms-of-the-series-1-2-2-2-3-2-4-2-5-2-6-2-is-




Question Number 99351 by 659083337 last updated on 20/Jun/20
The sum of n terms of the series   1^2  − 2^2  + 3^2  − 4^2  + 5^2  − 6^2  +.... is
Thesumofntermsoftheseries1222+3242+5262+.is
Commented by I want to learn more last updated on 20/Jun/20
1^2  + 3^2  + 5^2  + ... − 2^2   −  4^2   −  6^2   −  ...         1^2  + 3^2  + 5^2  + ... to n terms  − (2^2   +  4^2   +  6^2   +  ...  to  n terms)       =     1^2  + 3^2  + 5^2  + ... +  (2n  −  1)^2   − [2^2   +  4^2   +  6^2   +  ...  (2n)^2 ]    =           (n/3)(4n^2  −  1)  −  ((2n(n  +  1)(2n  +  1))/3)    =                       (n/3)[(4n^2  −  1)  −  2(n  +  1)(2n  +  1)]    =                             (n/3)[4n^2  −  1  −  (4n^2   +  6n  +  2)]    =                             (n/3)(4n^2  −  1  −  4n^2   −  6n  −  2)    =                                   (n/3)(−  6n  −  3) ,      ⇒     − ((3n)/3)(2n  +  1)  Therefore,  1^2   −   2^2   +   3^2    −  4^2    +  5^2   −  6^2   +  ....    =   −  (2n^2   +  n)
12+32+52+22426212+32+52+tonterms(22+42+62+tonterms)=12+32+52++(2n1)2[22+42+62+(2n)2]=n3(4n21)2n(n+1)(2n+1)3=n3[(4n21)2(n+1)(2n+1)]=n3[4n21(4n2+6n+2)]=n3(4n214n26n2)=n3(6n3),3n3(2n+1)Therefore,1222+3242+5262+.=(2n2+n)
Commented by PRITHWISH SEN 2 last updated on 20/Jun/20
If n is even then the series becomes  (1^2 −2^2 )+(3^2 −4^2 )+......+[(n−3)^2 −(n−2)^2 ]+                                        [(n−1)^2 −n^2 ]  = −{3+7+......(2n−5)+(2n−1)}  it is an A.P with commn diff. 4 and no of terms  = (n/2)  then  S_(n/2) = −(n/4){2.3+((n/2)−1)4}= − ((n(n+1))/2)  now when n is odd then the series  = 1^2 +(3^2 −2^2 )+.......+{(n−2)^2 −(n−3)^2 }+                                                     {n^2 −(n−1)^2 }  = 1+5+9+......+(2n−5)+(2n−1)  it is also an A.P where  d=4  and no. of term=((n+1)/2)  then  S_((n+1)/2) = ((n+1)/4){2.1+(((n+1)/2) −1)4} = ((n(n+1))/2)  i.e S_n = (−1)^(n+1) .((n(n+1))/2)  now when n=5  1^2 −2^2 +3^2 −4^2 +5^2  = (−1)^6 .((5×6)/2)=15  when n=6  1^2 −2^2 +3^2 −4^2 +5^2 −6^2 =(−1)^7 .((6×7)/2)=−21  please check
Ifniseventhentheseriesbecomes(1222)+(3242)++[(n3)2(n2)2]+[(n1)2n2]={3+7+(2n5)+(2n1)}itisanA.Pwithcommndiff.4andnoofterms=n2thenSn2=n4{2.3+(n21)4}=n(n+1)2nowwhennisoddthentheseries=12+(3222)+.+{(n2)2(n3)2}+{n2(n1)2}=1+5+9++(2n5)+(2n1)itisalsoanA.Pwhered=4andno.ofterm=n+12thenSn+12=n+14{2.1+(n+121)4}=n(n+1)2i.eSn=(1)n+1.n(n+1)2nowwhenn=51222+3242+52=(1)6.5×62=15whenn=61222+3242+5262=(1)7.6×72=21pleasecheck
Commented by Dwaipayan Shikari last updated on 20/Jun/20
Yes sir it is right
Commented by I want to learn more last updated on 20/Jun/20
sir, please use your  nth term to show few sum.  I want to understand it.
sir,pleaseuseyournthtermtoshowfewsum.Iwanttounderstandit.
Commented by I want to learn more last updated on 20/Jun/20
Thanks sir.
Thankssir.

Leave a Reply

Your email address will not be published. Required fields are marked *