Question Number 99351 by 659083337 last updated on 20/Jun/20

Commented by I want to learn more last updated on 20/Jun/20
![1^2 + 3^2 + 5^2 + ... − 2^2 − 4^2 − 6^2 − ... 1^2 + 3^2 + 5^2 + ... to n terms − (2^2 + 4^2 + 6^2 + ... to n terms) = 1^2 + 3^2 + 5^2 + ... + (2n − 1)^2 − [2^2 + 4^2 + 6^2 + ... (2n)^2 ] = (n/3)(4n^2 − 1) − ((2n(n + 1)(2n + 1))/3) = (n/3)[(4n^2 − 1) − 2(n + 1)(2n + 1)] = (n/3)[4n^2 − 1 − (4n^2 + 6n + 2)] = (n/3)(4n^2 − 1 − 4n^2 − 6n − 2) = (n/3)(− 6n − 3) , ⇒ − ((3n)/3)(2n + 1) Therefore, 1^2 − 2^2 + 3^2 − 4^2 + 5^2 − 6^2 + .... = − (2n^2 + n)](https://www.tinkutara.com/question/Q99393.png)
Commented by PRITHWISH SEN 2 last updated on 20/Jun/20
![If n is even then the series becomes (1^2 −2^2 )+(3^2 −4^2 )+......+[(n−3)^2 −(n−2)^2 ]+ [(n−1)^2 −n^2 ] = −{3+7+......(2n−5)+(2n−1)} it is an A.P with commn diff. 4 and no of terms = (n/2) then S_(n/2) = −(n/4){2.3+((n/2)−1)4}= − ((n(n+1))/2) now when n is odd then the series = 1^2 +(3^2 −2^2 )+.......+{(n−2)^2 −(n−3)^2 }+ {n^2 −(n−1)^2 } = 1+5+9+......+(2n−5)+(2n−1) it is also an A.P where d=4 and no. of term=((n+1)/2) then S_((n+1)/2) = ((n+1)/4){2.1+(((n+1)/2) −1)4} = ((n(n+1))/2) i.e S_n = (−1)^(n+1) .((n(n+1))/2) now when n=5 1^2 −2^2 +3^2 −4^2 +5^2 = (−1)^6 .((5×6)/2)=15 when n=6 1^2 −2^2 +3^2 −4^2 +5^2 −6^2 =(−1)^7 .((6×7)/2)=−21 please check](https://www.tinkutara.com/question/Q99409.png)
Commented by Dwaipayan Shikari last updated on 20/Jun/20
Yes sir it is right
Commented by I want to learn more last updated on 20/Jun/20

Commented by I want to learn more last updated on 20/Jun/20
