Menu Close

The-sum-of-the-first-n-terms-of-the-series-1-2-3-4-7-8-15-16-is-equal-to-




Question Number 11246 by 786786AM last updated on 18/Mar/17
The sum of the first n terms of the series  (1/2) + (3/4) + (7/8) + ((15)/(16)) + ... is equal to
Thesumofthefirstntermsoftheseries12+34+78+1516+isequalto
Answered by FilupS last updated on 18/Mar/17
(1/2) + (3/4) + (7/8) + ((15)/(16)) + ... = Σ_(k=1) ^n ((2^k −1)/2^k )  Σ_(k=1) ^n ((2^k −1)/2^k )=Σ_(k=1) ^n 1−(1/2^k )  =Σ_(k=1) ^n 1−Σ_(k=1) ^n (1/2^k )  =(Σ_(k=1) ^n 1)−S           S=Σ_(k=1) ^n (1/2^k )  Σ_(k=1) ^n ((2^k −1)/2^k )=n−S         (1)     S=Σ_(k=1) ^n (1/2^k )  S=(1/2^1 )+(1/2^2 )+(1/2^3 )+...+(1/2^n )  S=(1/2^1 )(1+(1/2^1 )+(1/2^2 )+...+(1/2^(n−1) ))  S=(1/2)(1+S−(1/2^n ))  S=(1/2)+(1/2)S−(1/2^(n+1) )  S−(1/2)S=(1/2)−(1/2^(n+1) )  S(1−(1/2))=((2^(n+1) −2)/2^(n+2) )  S(1−(1/2))=((2(2^n −1))/2^(n+2) )  S(1−(1/2))=(((2^n −1))/2^(n+1) )  S=(((2^n −1))/(2^(n+1) (1−(1/2))))  S=(((2^n −1))/(2^(n+1) −(1/2)2^(n+1) ))  S=(((2^n −1))/(2^(n+1) −2^n ))  S=(((2^n −1))/(2^n (2^1 −1)))  S=((2^n −1)/2^n )     (2)     sub (2)→(1)  Σ_(k=1) ^n ((2^k −1)/2^k )=n−S  =n−((2^n −1)/2^n )  =n−((2^n /2^n )−(1/2^n ))  =n−(1−(1/2^n ))  =n+(1/2^n )−1     ∴Σ_(k=1) ^n ((2^k −1)/2^k ) = (1/2) + (3/4) + ... = n+(1/2^n )−1
12+34+78+1516+=nk=12k12knk=12k12k=nk=1112k=nk=11nk=112k=(nk=11)SS=nk=112knk=12k12k=nS(1)S=nk=112kS=121+122+123++12nS=121(1+121+122++12n1)S=12(1+S12n)S=12+12S12n+1S12S=1212n+1S(112)=2n+122n+2S(112)=2(2n1)2n+2S(112)=(2n1)2n+1S=(2n1)2n+1(112)S=(2n1)2n+1122n+1S=(2n1)2n+12nS=(2n1)2n(211)S=2n12n(2)sub(2)(1)nk=12k12k=nS=n2n12n=n(2n2n12n)=n(112n)=n+12n1nk=12k12k=12+34+=n+12n1
Answered by sandy_suhendra last updated on 18/Mar/17
=(1−(1/2))+(1−(1/4))+(1−(1/8))+...  =(1+1+1+...)−((1/2)+(1/4)+(1/8)+...)  = n − (((1/2)[1−((1/2))^n ])/(1−(1/2)))  = n − 1 + ((1/2))^n
=(112)+(114)+(118)+=(1+1+1+)(12+14+18+)=n12[1(12)n]112=n1+(12)n
Commented by FilupS last updated on 18/Mar/17
I did my proof without the formula :P
Ididmyproofwithouttheformula:P

Leave a Reply

Your email address will not be published. Required fields are marked *