Menu Close

The-sum-of-the-last-eight-coefficients-in-the-expansion-of-1-x-16-is-2-15-




Question Number 55788 by gunawan last updated on 04/Mar/19
The sum of the last eight coefficients in  the expansion of (1+x)^(16)  is 2^(15)  .
Thesumofthelasteightcoefficientsintheexpansionof(1+x)16is215.
Commented by gunawan last updated on 04/Mar/19
True or false
Trueorfalse
Commented by maxmathsup by imad last updated on 04/Mar/19
we have (x+1)^(16)  =Σ_(k=0) ^(16)  C_(16) ^k  x^k  =Σ_(k=0) ^(16)  a_k x^k  ⇒  a_0 +a_1 +....+a_7  =Σ_(k=0) ^7  C_(16) ^k    but if  p(x)=a_0 +a_1 x +a_2 x^2  +...+a_n x^n  ⇒  a_o  +a_1 +....+a_n =p(1) and a_o  +a_1 +...+a_p =p(1)−a_(p+1) −a_(p+2) −...−a_n  in this case  p(x)=(x+1)^(16)  ⇒a_0  +a_1 +...+a_7 =p(1)−a_8 −a_9 −....−a_(16)   but a_8 =C_(16) ^8      a_9 =C_(16) ^9 =C_(16) ^7 =a_7   ,  a_(10) =C_(16) ^(10)  =C_(16) ^6  =a_6  ,  a_(16) =a_0   2(a_0  +a_1 +....+a_7 ) =p(1)−a_8 =2^(16)  −C_(16) ^8  =2^(16) −((16!)/(8!8!))  =2^(16) −((16!)/((8!)^2 ))
wehave(x+1)16=k=016C16kxk=k=016akxka0+a1+.+a7=k=07C16kbutifp(x)=a0+a1x+a2x2++anxnao+a1+.+an=p(1)andao+a1++ap=p(1)ap+1ap+2aninthiscasep(x)=(x+1)16a0+a1++a7=p(1)a8a9.a16buta8=C168a9=C169=C167=a7,a10=C1610=C166=a6,a16=a02(a0+a1+.+a7)=p(1)a8=216C168=21616!8!8!=21616!(8!)2
Commented by maxmathsup by imad last updated on 04/Mar/19
⇒a_0 +a_1 +....+a_7 =2^(15) −(1/2) ((16!)/((8!)^2 ))
a0+a1+.+a7=2151216!(8!)2
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Mar/19
total terms=16+1=17  sum of coeffucients  (1+x)^(16) =1+16c_1 x+16c_2 x^2 +16c_3 x^3 +..+16c_(16) x^(16)   2^(16) =16c_0 +16c_1 +...+16c_8 +16c_9 +16c_(10) +..+16c_(16)   we have ti find the value of   16c_(16) +16c_(15) +16c_(14) +16c_(13) +16c_(12) +16c_(11) +16c_(10) +16c_9 =k  again  16c_0 +16c_1 +16c_2 +16c_3 +16c_4 +16c_5 +16c_6 +16c_7 =k  [since nc_r =nc_(n−r) ]  now  ninth term is 16c_8 x^8 →coeeficient=16c_8   so 2k+16c_8 =2^(16)   2k=2^(16) −((16!)/(8!8!))  k=2^(15) −(1/2)(((16!)/(8!8!)))  required ans is2^(15) −(1/2)(((16!)/(8!8!)))  pls check...
totalterms=16+1=17sumofcoeffucients(1+x)16=1+16c1x+16c2x2+16c3x3+..+16c16x16216=16c0+16c1++16c8+16c9+16c10+..+16c16wehavetifindthevalueof16c16+16c15+16c14+16c13+16c12+16c11+16c10+16c9=kagain16c0+16c1+16c2+16c3+16c4+16c5+16c6+16c7=k[sincencr=ncnr]nowninthtermis16c8x8coeeficient=16c8so2k+16c8=2162k=21616!8!8!k=21512(16!8!8!)requiredansis21512(16!8!8!)plscheck

Leave a Reply

Your email address will not be published. Required fields are marked *