Menu Close

The-system-of-equations-kx-y-z-1-x-ky-z-k-and-x-y-kz-k-2-have-no-solution-if-k-equals-




Question Number 88872 by Zainal Arifin last updated on 13/Apr/20
The system of equations   kx+y+z=1,  x+ky+z=k   and   x+y+kz=k^2  have  no solution if   k  equals
Thesystemofequationskx+y+z=1,x+ky+z=kandx+y+kz=k2havenosolutionifkequals
Commented by john santu last updated on 13/Apr/20
⇒k  determinant (((k    1)),((1    k)))− determinant (((1   1)),((1   k)))+ determinant (((1    k)),((1    1)))=0  k(k^2 −1)−(k−1)+1−k = 0  k^3 −k−k+1+1−k = 0  k^3  −3k+2 = 0   (k−1)(k^2 +k−2) =0  (k−1)(k+2)(k−1) = 0  k =  { (1),((−2)) :}
k|k11k||111k|+|1k11|=0k(k21)(k1)+1k=0k3kk+1+1k=0k33k+2=0(k1)(k2+k2)=0(k1)(k+2)(k1)=0k={12

Leave a Reply

Your email address will not be published. Required fields are marked *