Menu Close

The-value-of-a-log-b-x-where-a-0-2-b-5-x-1-4-1-8-1-16-to-is-




Question Number 56418 by gunawan last updated on 16/Mar/19
The value of  a^(log_b x) where a=0.2, b=(√(5,))  x=(1/4) + (1/8) + (1/(16)) + ... to ∞ is
$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\:{a}^{\mathrm{log}_{{b}} {x}} \mathrm{where}\:{a}=\mathrm{0}.\mathrm{2},\:{b}=\sqrt{\mathrm{5},} \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{4}}\:+\:\frac{\mathrm{1}}{\mathrm{8}}\:+\:\frac{\mathrm{1}}{\mathrm{16}}\:+\:…\:\mathrm{to}\:\infty\:\mathrm{is} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 16/Mar/19
x=((1/4)/(1−(1/2)))=(1/2)=0.5  t=log_b x→b^t =x→(5)^(t/2) =(1/2)=0.5  (t/2)=log_5 (0.5)→t=2log_5 (0.5)  so a^(log_b x) →0.2^(log_5 (0.25))
$${x}=\frac{\frac{\mathrm{1}}{\mathrm{4}}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}}=\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0}.\mathrm{5} \\ $$$${t}={log}_{{b}} {x}\rightarrow{b}^{{t}} ={x}\rightarrow\left(\mathrm{5}\right)^{\frac{{t}}{\mathrm{2}}} =\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0}.\mathrm{5} \\ $$$$\frac{{t}}{\mathrm{2}}={log}_{\mathrm{5}} \left(\mathrm{0}.\mathrm{5}\right)\rightarrow{t}=\mathrm{2}{log}_{\mathrm{5}} \left(\mathrm{0}.\mathrm{5}\right) \\ $$$${so}\:{a}^{{log}_{{b}} {x}} \rightarrow\mathrm{0}.\mathrm{2}^{{log}_{\mathrm{5}} \left(\mathrm{0}.\mathrm{25}\right)} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *