Question Number 70385 by ®Ëƒ ¬Ë°¹¾¨ ‰¦Í¦¿¨ ¸Ë¹Ç² last updated on 04/Oct/19
$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{determinant} \\ $$$$\begin{vmatrix}{{x}+\mathrm{2}}&{\:{x}+\mathrm{3}}&{{x}+\mathrm{5}}\\{{x}+\mathrm{4}}&{\:{x}+\mathrm{6}}&{{x}+\mathrm{9}}\\{{x}+\mathrm{8}}&{{x}+\mathrm{11}}&{{x}+\mathrm{15}}\end{vmatrix}\:\mathrm{is} \\ $$
Answered by $@ty@m123 last updated on 04/Oct/19
$$=\begin{vmatrix}{−\mathrm{1}}&{\:−\mathrm{2}}&{{x}+\mathrm{5}}\\{−\mathrm{2}}&{\:−\mathrm{3}}&{{x}+\mathrm{9}}\\{−\mathrm{3}}&{−\mathrm{4}}&{{x}+\mathrm{15}}\end{vmatrix}\begin{cases}{{by}\:{C}_{\mathrm{1}} \rightarrow{C}_{\mathrm{1}} −{C}_{\mathrm{2}} }\\{\&\:{C}_{\mathrm{2}} \rightarrow{C}_{\mathrm{2}} −{C}_{\mathrm{3}} }\end{cases}\:\:\: \\ $$$$=\begin{vmatrix}{\mathrm{1}}&{\:\mathrm{1}}&{−\mathrm{4}}\\{\mathrm{1}}&{\:\mathrm{1}}&{−\mathrm{6}}\\{−\mathrm{3}}&{−\mathrm{4}}&{{x}+\mathrm{15}}\end{vmatrix}\begin{cases}{{by}\:{R}_{\mathrm{1}} \rightarrow{R}_{\mathrm{1}} −{R}_{\mathrm{2}} }\\{\&\:{R}_{\mathrm{2}} \rightarrow{R}_{\mathrm{2}} −{R}_{\mathrm{3}} }\end{cases}\:\:\:\:\: \\ $$$$=\begin{vmatrix}{\mathrm{0}}&{\:\mathrm{0}}&{\mathrm{2}}\\{\mathrm{1}}&{\:\mathrm{1}}&{−\mathrm{6}}\\{−\mathrm{3}}&{−\mathrm{4}}&{{x}+\mathrm{15}}\end{vmatrix}\:{by}\:{R}_{\mathrm{1}} \rightarrow{R}_{\mathrm{1}} −{R}_{\mathrm{2}} \: \\ $$$$=\mathrm{2}\begin{vmatrix}{\mathrm{1}}&{\mathrm{1}}\\{−\mathrm{3}}&{−\mathrm{4}}\end{vmatrix} \\ $$$$=\mathrm{2}\left(−\mathrm{4}+\mathrm{3}\right) \\ $$$$=−\mathrm{2} \\ $$