Menu Close

The-value-of-the-integral-0-pi-1-a-2-2a-cos-x-1-dx-a-gt-1-is-




Question Number 57138 by mustakim420 last updated on 30/Mar/19
The value of the integral  ∫_( 0) ^π    (1/(a^2 −2a cos x+1)) dx  (a >1)  is
Thevalueoftheintegralπ01a22acosx+1dx(a>1)is
Commented by maxmathsup by imad last updated on 30/Mar/19
let  f(a) =∫_0 ^π      (dx/(a^2 −2acosx +1)) ⇒f(a) =_(tan((x/2))=t)   ∫_0 ^(+∞)    ((2dt)/((1+t^2 )(a^2  −2a((1−t^2 )/(1+t^2 )) +1)))  =2 ∫_0 ^∞     (dt/((1+t^2 )a^2  −2a(1−t^2 )+1+t^2 )) =2 ∫_0 ^∞    (dt/(a^2 t^2  +a^2  −2a+2at^2  +1+t^2 ))  =2 ∫_0 ^∞    (dt/((a^2  +2a+1)t^(2 )  +a^2 −2a+1)) =2 ∫_0 ^∞     (dt/((a+1)^2 t^2  +(a−1)^2 ))  changement (a+1)t =(a−1)u  give  f(a) =2  ∫_0 ^∞     (1/((a−1)^2 (1+u^2 ))) ((a−1)/(a+1)) du =(2/(a^2 −1)) [arctan(u)]_0 ^(+∞)   =(2/(a^2 −1)) (π/2) =(π/(a^2 −1))  ⇒f(a) =(π/(a^2  −1))  with a>1 .
letf(a)=0πdxa22acosx+1f(a)=tan(x2)=t0+2dt(1+t2)(a22a1t21+t2+1)=20dt(1+t2)a22a(1t2)+1+t2=20dta2t2+a22a+2at2+1+t2=20dt(a2+2a+1)t2+a22a+1=20dt(a+1)2t2+(a1)2changement(a+1)t=(a1)ugivef(a)=201(a1)2(1+u2)a1a+1du=2a21[arctan(u)]0+=2a21π2=πa21f(a)=πa21witha>1.
Answered by tanmay.chaudhury50@gmail.com last updated on 30/Mar/19
∫(dx/(a^2 +1−2acosx))  (1/(2a))∫(dx/(k−cosx))  [k=((a^2 +1)/(2a))]  t=tan(x/2)      2dt=sec^2 (x/2)dx  dx=((2dt)/(1+t^2 ))  (1/(2a))∫((2dt)/((1+t^2 )(k−((1−t^2 )/(1+t^2 )))))  (1/a)∫(dt/(k+kt^2 −1+t^2 ))  (1/a)∫(dt/((k−1)+t^2 (k+1)))  (1/(a(k+1)))∫(dt/(((k−1)/(k+1))+t^2 ))  (1/(a(((a^2 +1)/(2a))+1)))×(1/( (√((k−1)/(k+1)))))tan^(−1) ((t/( (√((k−1)/(k+1))))))    k=((a^2 +1)/(2a))  ((k−1)/(k+1))=((a^2 +1+2a)/(a^2 +1−2a))=(((a+1)^2 )/((a−1)^2 ))  (√((k−1)/(k+1))) =((a+1)/(a−1))  (2/((a+1)^2 ))×(1/((a−1)/(a+1)))∣tan^(−1) (((tan(x/2))/((a−1)/(a+1))))∣_0 ^π   (2/(a^2 −1))×[tan^(−1) (∞)−0]  (2/(a^2 −1))×(π/2)→(π/(a^2 −1))
dxa2+12acosx12adxkcosx[k=a2+12a]t=tanx22dt=sec2x2dxdx=2dt1+t212a2dt(1+t2)(k1t21+t2)1adtk+kt21+t21adt(k1)+t2(k+1)1a(k+1)dtk1k+1+t21a(a2+12a+1)×1k1k+1tan1(tk1k+1)k=a2+12ak1k+1=a2+1+2aa2+12a=(a+1)2(a1)2k1k+1=a+1a12(a+1)2×1a1a+1tan1(tanx2a1a+1)0π2a21×[tan1()0]2a21×π2πa21

Leave a Reply

Your email address will not be published. Required fields are marked *