The-value-of-the-integral-0-pi-1-a-2-2a-cos-x-1-dx-a-gt-1-is- Tinku Tara June 14, 2023 None 0 Comments FacebookTweetPin Question Number 57138 by mustakim420 last updated on 30/Mar/19 Thevalueoftheintegral∫π01a2−2acosx+1dx(a>1)is Commented by maxmathsup by imad last updated on 30/Mar/19 letf(a)=∫0πdxa2−2acosx+1⇒f(a)=tan(x2)=t∫0+∞2dt(1+t2)(a2−2a1−t21+t2+1)=2∫0∞dt(1+t2)a2−2a(1−t2)+1+t2=2∫0∞dta2t2+a2−2a+2at2+1+t2=2∫0∞dt(a2+2a+1)t2+a2−2a+1=2∫0∞dt(a+1)2t2+(a−1)2changement(a+1)t=(a−1)ugivef(a)=2∫0∞1(a−1)2(1+u2)a−1a+1du=2a2−1[arctan(u)]0+∞=2a2−1π2=πa2−1⇒f(a)=πa2−1witha>1. Answered by tanmay.chaudhury50@gmail.com last updated on 30/Mar/19 ∫dxa2+1−2acosx12a∫dxk−cosx[k=a2+12a]t=tanx22dt=sec2x2dxdx=2dt1+t212a∫2dt(1+t2)(k−1−t21+t2)1a∫dtk+kt2−1+t21a∫dt(k−1)+t2(k+1)1a(k+1)∫dtk−1k+1+t21a(a2+12a+1)×1k−1k+1tan−1(tk−1k+1)k=a2+12ak−1k+1=a2+1+2aa2+1−2a=(a+1)2(a−1)2k−1k+1=a+1a−12(a+1)2×1a−1a+1∣tan−1(tanx2a−1a+1)∣0π2a2−1×[tan−1(∞)−0]2a2−1×π2→πa2−1 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: a-b-f-x-f-x-f-a-b-x-dx-Next Next post: 0-1-1-x-1-x-3-dx-15-8- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.