Menu Close

The-value-of-the-integral-0-pi-1-a-2-2a-cos-x-1-dx-a-lt-1-is-




Question Number 27295 by iy last updated on 04/Jan/18
The value of the integral  ∫_( 0) ^π   (1/(a^2 −2a cos x+1)) dx  (a< 1) is
Thevalueoftheintegralπ01a22acosx+1dx(a<1)is
Commented by abdo imad last updated on 04/Jan/18
let do the changement  tan((x/2))=t  I=∫_0 ^π    (dx/(a^2 −2a cosx +1))= ∫_0 ^∝ ((dt/(1+t^2 ))/(a^2 −2a((1−t^2 )/(1+t^2 )) +1))    = ∫_0 ^∝ (dt/(a^2 (1+t^2 ) −2a(1−t^2 )+1+t^2 ))  = ∫_0 ^∝       (dt/((a^2 +2a +1)t^2  +a^2 −2a +1))  = ∫_0 ^∝     (dt/((a+1)^2 t^2  +(a−1)^2 ))  =∫_0 ^∝      (dt/((a+1)^2 ( t^2  + (((1−a)/(a+1)))^2  ))) and we do the changeent  t= ((1−a)/(a+1)) α ⇒I= (1/((a+1)^2 )) ∫_0 ^∝   ((((1−a)/(a+1))dα)/((((1−a)/(a+1)))^2 (1+α^2 )))  =(1/((a+1)^2 ))((1−a)/(a+1))(((a+1)^2 )/((1−a)^2 )) (π/2)  =(π/(2(1−a^2 ))) .
letdothechangementtan(x2)=tI=0πdxa22acosx+1=0dt1+t2a22a1t21+t2+1=0dta2(1+t2)2a(1t2)+1+t2=0dt(a2+2a+1)t2+a22a+1=0dt(a+1)2t2+(a1)2=0dt(a+1)2(t2+(1aa+1)2)andwedothechangeentt=1aa+1αI=1(a+1)201aa+1dα(1aa+1)2(1+α2)=1(a+1)21aa+1(a+1)2(1a)2π2=π2(1a2).

Leave a Reply

Your email address will not be published. Required fields are marked *