Menu Close

The-value-of-the-integral-1-3-3-x-3-dx-lies-in-the-interval-




Question Number 91494 by Zainal Arifin last updated on 01/May/20
The value of the integral ∫_( 1) ^3  (√(3+x^3 )) dx  lies in the interval....
$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{integral}\:\underset{\:\mathrm{1}} {\overset{\mathrm{3}} {\int}}\:\sqrt{\mathrm{3}+{x}^{\mathrm{3}} }\:{dx} \\ $$$$\mathrm{lies}\:\mathrm{in}\:\mathrm{the}\:\mathrm{interval}…. \\ $$
Answered by Joel578 last updated on 01/May/20
I = ∫_1 ^( 3)  (√(3 + x^3 )) dx    ∫_1 ^( 3)  x^(3/2)  dx ≤ I ≤ ∫_1 ^( 3)  3 + x^(3/2)  dx  ⇒ (2/5) determinant ((x^(5/2) ))_1 ^3  ≤ I ≤  determinant (((3x + (2/5)x^(5/2) )))_1 ^3   ⇒ ((18(√3) − 2)/5) ≤ I ≤ ((28 + 18(√3) )/5)
$${I}\:=\:\int_{\mathrm{1}} ^{\:\mathrm{3}} \:\sqrt{\mathrm{3}\:+\:{x}^{\mathrm{3}} }\:{dx} \\ $$$$ \\ $$$$\int_{\mathrm{1}} ^{\:\mathrm{3}} \:{x}^{\frac{\mathrm{3}}{\mathrm{2}}} \:{dx}\:\leqslant\:{I}\:\leqslant\:\int_{\mathrm{1}} ^{\:\mathrm{3}} \:\mathrm{3}\:+\:{x}^{\frac{\mathrm{3}}{\mathrm{2}}} \:{dx} \\ $$$$\Rightarrow\:\frac{\mathrm{2}}{\mathrm{5}}\begin{vmatrix}{{x}^{\frac{\mathrm{5}}{\mathrm{2}}} }\end{vmatrix}_{\mathrm{1}} ^{\mathrm{3}} \:\leqslant\:{I}\:\leqslant\:\begin{vmatrix}{\mathrm{3}{x}\:+\:\frac{\mathrm{2}}{\mathrm{5}}{x}^{\frac{\mathrm{5}}{\mathrm{2}}} }\end{vmatrix}_{\mathrm{1}} ^{\mathrm{3}} \\ $$$$\Rightarrow\:\frac{\mathrm{18}\sqrt{\mathrm{3}}\:−\:\mathrm{2}}{\mathrm{5}}\:\leqslant\:{I}\:\leqslant\:\frac{\mathrm{28}\:+\:\mathrm{18}\sqrt{\mathrm{3}}\:}{\mathrm{5}}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *