Menu Close

The-value-of-x-between-0-and-2pi-which-satisfy-the-equation-sin-x-8-cos-2-x-1-are-in-AP-Find-the-common-difference-




Question Number 54541 by Tip Top last updated on 05/Feb/19
The value of x between   0  and   2π   which satisfy the equation   sin x (√(8 cos^2 x)) = 1  are in AP   Find the common difference.
Thevalueofxbetween0and2πwhichsatisfytheequationsinx8cos2x=1areinAPFindthecommondifference.
Answered by tanmay.chaudhury50@gmail.com last updated on 05/Feb/19
sinx×(±2(√2) cosx)=1  cosidering + sign  2sinxcosx=(1/( (√2)))  sin2x=(1/( (√2)))=sin((π/4))  in first quadrant  2x=(π/4)  → x=(π/8)  sin2x=(1/( (√2)))=sin(π−(π/4))→2nd quadrant  2x=((3π)/4)→ x=((3π)/8)    now consider − sign  sin2x=−(1/( (√2)))=sin(π+(π/4))→3rd quadrant  2x=((5π)/4)   x=((5π)/8)  sin2x=((−1)/( (√2)))=sin(2π−(π/4))  2x=((7π)/4)→x=((7π)/8)  so value of x are  (π/8),((3π)/8),((5π)/8),((7π)/8)   common difference=((3π−π)/8)=(π/4)
sinx×(±22cosx)=1cosidering+sign2sinxcosx=12sin2x=12=sin(π4)infirstquadrant2x=π4x=π8sin2x=12=sin(ππ4)2ndquadrant2x=3π4x=3π8nowconsidersignsin2x=12=sin(π+π4)3rdquadrant2x=5π4x=5π8sin2x=12=sin(2ππ4)2x=7π4x=7π8sovalueofxareπ8,3π8,5π8,7π8commondifference=3ππ8=π4

Leave a Reply

Your email address will not be published. Required fields are marked *