Menu Close

The-values-of-lying-between-0-and-pi-2-and-satisfying-the-equation-determinant-1-sin-2-cos-2-4-sin-4-sin-2-1-cos-2-4-sin-4-sin-2-cos-2-1-sin-4-




Question Number 108790 by saorey0202 last updated on 19/Aug/20
The values of θ lying between 0 and  (π/2) and satisfying the equation   determinant (((1+sin^2 θ),(  cos^2 θ),(4 sin 4θ)),((   sin^2 θ),(1+cos^2 θ),(4 sin 4θ)),((   sin^2 θ),(   cos^2 θ),(1+sin^4 θ)))=0  are
Thevaluesofθlyingbetween0andπ2andsatisfyingtheequation|1+sin2θcos2θ4sin4θsin2θ1+cos2θ4sin4θsin2θcos2θ1+sin4θ|=0are
Commented by $@y@m last updated on 19/Aug/20
I think there is typo in question. Please check.
Answered by $@y@m last updated on 19/Aug/20
 determinant (((1+sin^2 θ+cos^2 θ),(  cos^2 θ),(4 sin 4θ)),((   sin^2 θ+1+cos^2 θ),(1+cos^2 θ),(4 sin 4θ)),((   sin^2 θ+cos^2 θ),(   cos^2 θ),(1+sin^() 4θ)))=0                                             by C_1 →C_1 +C_2    determinant ((2,(cos^2 θ),(4 sin 4θ)),(2,(1+cos^2 θ),(4 sin 4θ)),(( 1),(   cos^2 θ),(1+sin^() 4θ)))=0     determinant ((0,(−1),0),(2,(1+cos^2 θ),(4 sin 4θ)),(( 1),(   cos^2 θ),(1+sin^() 4θ)))=0                                              by R_1 →R_1 −R_2   2(1+sin^() 4θ)−4sin 4θ=0  1+sin4θ−2sin 4θ=0  1−sin4θ=0  sin4θ=1  4θ=(π/2)  θ=(π/8)
|1+sin2θ+cos2θcos2θ4sin4θsin2θ+1+cos2θ1+cos2θ4sin4θsin2θ+cos2θcos2θ1+sin4θ|=0byC1C1+C2|2cos2θ4sin4θ21+cos2θ4sin4θ1cos2θ1+sin4θ|=0|01021+cos2θ4sin4θ1cos2θ1+sin4θ|=0byR1R1R22(1+sin4θ)4sin4θ=01+sin4θ2sin4θ=01sin4θ=0sin4θ=14θ=π2θ=π8
Commented by PRITHWISH SEN 2 last updated on 19/Aug/20
1+sin 4θ−2sin 4θ=0  1−sin 4θ=0  please check
1+sin4θ2sin4θ=01sin4θ=0pleasecheck
Commented by $@y@m last updated on 19/Aug/20
Thanχ
Thanχ
Commented by PRITHWISH SEN 2 last updated on 19/Aug/20
welcome
welcome

Leave a Reply

Your email address will not be published. Required fields are marked *