Menu Close

The-vector-a-3i-2j-2k-and-b-i-2k-are-the-adjacent-sides-of-a-parallelogram-Then-angle-between-its-diagonal-is-




Question Number 91496 by Zainal Arifin last updated on 01/May/20
The vector a=3i−2j+2k  and b=−i−2k  are the adjacent sides of a parallelogram.  Then angle between its diagonal is
$$\mathrm{The}\:\mathrm{vector}\:\boldsymbol{\mathrm{a}}=\mathrm{3}\boldsymbol{\mathrm{i}}−\mathrm{2}\boldsymbol{\mathrm{j}}+\mathrm{2}\boldsymbol{\mathrm{k}}\:\:\mathrm{and}\:\boldsymbol{\mathrm{b}}=−\boldsymbol{\mathrm{i}}−\mathrm{2}\boldsymbol{\mathrm{k}} \\ $$$$\mathrm{are}\:\mathrm{the}\:\mathrm{adjacent}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{a}\:\mathrm{parallelogram}. \\ $$$$\mathrm{Then}\:\mathrm{angle}\:\mathrm{between}\:\mathrm{its}\:\mathrm{diagonal}\:\mathrm{is} \\ $$
Commented by jagoll last updated on 01/May/20
a^→ +b^→  = (2,−2,0)  a^→ −b^→  = (4,−2, 4)  let θ = the angle between diagonals  cos θ = ((8+4)/(2(√2) .6)) = (1/( (√2))) ⇒θ=(π/4)
$$\overset{\rightarrow} {{a}}+\overset{\rightarrow} {{b}}\:=\:\left(\mathrm{2},−\mathrm{2},\mathrm{0}\right) \\ $$$$\overset{\rightarrow} {{a}}−\overset{\rightarrow} {{b}}\:=\:\left(\mathrm{4},−\mathrm{2},\:\mathrm{4}\right) \\ $$$${let}\:\theta\:=\:{the}\:{angle}\:{between}\:{diagonals} \\ $$$$\mathrm{cos}\:\theta\:=\:\frac{\mathrm{8}+\mathrm{4}}{\mathrm{2}\sqrt{\mathrm{2}}\:.\mathrm{6}}\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\Rightarrow\theta=\frac{\pi}{\mathrm{4}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *