Menu Close

Thr-6th-term-of-an-AP-is-equal-to-2-the-value-of-the-common-difference-of-the-AP-Which-makes-the-product-a-1-a-4-a-5-least-is-given-by-




Question Number 46922 by 786786AM last updated on 02/Nov/18
Thr 6th term of an AP is equal to 2, the  value of the common difference of the AP.  Which makes the product a_1  a_4  a_5  least  is given  by
$$\mathrm{Thr}\:\mathrm{6th}\:\mathrm{term}\:\mathrm{of}\:\mathrm{an}\:\mathrm{AP}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{2},\:\mathrm{the} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{common}\:\mathrm{difference}\:\mathrm{of}\:\mathrm{the}\:\mathrm{AP}. \\ $$$$\mathrm{Which}\:\mathrm{makes}\:\mathrm{the}\:\mathrm{product}\:{a}_{\mathrm{1}} \:{a}_{\mathrm{4}} \:{a}_{\mathrm{5}} \:\mathrm{least} \\ $$$$\mathrm{is}\:\mathrm{given}\:\:\mathrm{by} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Nov/18
a+5d=2  p=a(a+3d)(a+4d)  p=(2−5d)(2−5d+3d)(2−5d+4d)  p=(2−5d)(2−2d)(2−d)  lnp=ln(2−5d)+ln(2−2d)+ln(2−d)  (1/p)×(dp/(d(d)))=(1/(2−5d))×(−5)+(1/(2−2d))×(−2)+(1/(2−d))×(−1)  Dp=p×[((−5)/(2−5d))+((−2)/(2−2d))+((−1)/(2−d))]  =−5(2−2d)(2−d)−2(2−5d)(2−d)−(2−5d)(2−2d)  =−5(4−6d+2d^2 )−2(4−12d+5d^2 )−1(4−14d+10d^2 )  for max/min Dp=0  20−30d+10d^2 +8−24d+10d^2 +4−14d+10d^2   =30d^2 −68d+32  15d^2 −34d+16=0  d=((34±(√(34^2 −4×15×16)))/(2×15))  d=((34±(√(1156−960)))/(30))  d=((34±14)/(30))  (((48)/(30)),((20)/(30)))→((8/5),(2/3))  Dp=30d^2 −68d+16  D^2 p=60d−68  value of D^2 p at d=(8/5) is  60×(8/5)−68=96−68=28    +ve  value at (2/3)is   60×(2/3)−68=40−68=−28 −ve  so at d=(2/3)  the product is maximum and d=(8/5)  it is minimum...  now a+5d=2  a+5×(8/5)=2   a=−6  a_1 ×a_4 ×a_5   (−6)×(−6+3×(8/5))(−6+4×(8/5))  =(−6)×(((−30+24)/5))(((−30+32)/5))  =(−6)×(((−6)/5))((2/5))=((72)/(25))  pls check....
$${a}+\mathrm{5}{d}=\mathrm{2} \\ $$$${p}={a}\left({a}+\mathrm{3}{d}\right)\left({a}+\mathrm{4}{d}\right) \\ $$$${p}=\left(\mathrm{2}−\mathrm{5}{d}\right)\left(\mathrm{2}−\mathrm{5}{d}+\mathrm{3}{d}\right)\left(\mathrm{2}−\mathrm{5}{d}+\mathrm{4}{d}\right) \\ $$$${p}=\left(\mathrm{2}−\mathrm{5}{d}\right)\left(\mathrm{2}−\mathrm{2}{d}\right)\left(\mathrm{2}−{d}\right) \\ $$$${lnp}={ln}\left(\mathrm{2}−\mathrm{5}{d}\right)+{ln}\left(\mathrm{2}−\mathrm{2}{d}\right)+{ln}\left(\mathrm{2}−{d}\right) \\ $$$$\frac{\mathrm{1}}{{p}}×\frac{{dp}}{{d}\left({d}\right)}=\frac{\mathrm{1}}{\mathrm{2}−\mathrm{5}{d}}×\left(−\mathrm{5}\right)+\frac{\mathrm{1}}{\mathrm{2}−\mathrm{2}{d}}×\left(−\mathrm{2}\right)+\frac{\mathrm{1}}{\mathrm{2}−{d}}×\left(−\mathrm{1}\right) \\ $$$${Dp}={p}×\left[\frac{−\mathrm{5}}{\mathrm{2}−\mathrm{5}{d}}+\frac{−\mathrm{2}}{\mathrm{2}−\mathrm{2}{d}}+\frac{−\mathrm{1}}{\mathrm{2}−{d}}\right] \\ $$$$=−\mathrm{5}\left(\mathrm{2}−\mathrm{2}{d}\right)\left(\mathrm{2}−{d}\right)−\mathrm{2}\left(\mathrm{2}−\mathrm{5}{d}\right)\left(\mathrm{2}−{d}\right)−\left(\mathrm{2}−\mathrm{5}{d}\right)\left(\mathrm{2}−\mathrm{2}{d}\right) \\ $$$$=−\mathrm{5}\left(\mathrm{4}−\mathrm{6}{d}+\mathrm{2}{d}^{\mathrm{2}} \right)−\mathrm{2}\left(\mathrm{4}−\mathrm{12}{d}+\mathrm{5}{d}^{\mathrm{2}} \right)−\mathrm{1}\left(\mathrm{4}−\mathrm{14}{d}+\mathrm{10}{d}^{\mathrm{2}} \right) \\ $$$${for}\:{max}/{min}\:{Dp}=\mathrm{0} \\ $$$$\mathrm{20}−\mathrm{30}{d}+\mathrm{10}{d}^{\mathrm{2}} +\mathrm{8}−\mathrm{24}{d}+\mathrm{10}{d}^{\mathrm{2}} +\mathrm{4}−\mathrm{14}{d}+\mathrm{10}{d}^{\mathrm{2}} \\ $$$$=\mathrm{30}{d}^{\mathrm{2}} −\mathrm{68}{d}+\mathrm{32} \\ $$$$\mathrm{15}{d}^{\mathrm{2}} −\mathrm{34}{d}+\mathrm{16}=\mathrm{0} \\ $$$${d}=\frac{\mathrm{34}\pm\sqrt{\mathrm{34}^{\mathrm{2}} −\mathrm{4}×\mathrm{15}×\mathrm{16}}}{\mathrm{2}×\mathrm{15}} \\ $$$${d}=\frac{\mathrm{34}\pm\sqrt{\mathrm{1156}−\mathrm{960}}}{\mathrm{30}} \\ $$$${d}=\frac{\mathrm{34}\pm\mathrm{14}}{\mathrm{30}}\:\:\left(\frac{\mathrm{48}}{\mathrm{30}},\frac{\mathrm{20}}{\mathrm{30}}\right)\rightarrow\left(\frac{\mathrm{8}}{\mathrm{5}},\frac{\mathrm{2}}{\mathrm{3}}\right) \\ $$$${Dp}=\mathrm{30}{d}^{\mathrm{2}} −\mathrm{68}{d}+\mathrm{16} \\ $$$${D}^{\mathrm{2}} {p}=\mathrm{60}{d}−\mathrm{68} \\ $$$${value}\:{of}\:{D}^{\mathrm{2}} {p}\:{at}\:{d}=\frac{\mathrm{8}}{\mathrm{5}}\:{is} \\ $$$$\mathrm{60}×\frac{\mathrm{8}}{\mathrm{5}}−\mathrm{68}=\mathrm{96}−\mathrm{68}=\mathrm{28}\:\:\:\:+{ve} \\ $$$${value}\:{at}\:\frac{\mathrm{2}}{\mathrm{3}}{is}\: \\ $$$$\mathrm{60}×\frac{\mathrm{2}}{\mathrm{3}}−\mathrm{68}=\mathrm{40}−\mathrm{68}=−\mathrm{28}\:−{ve} \\ $$$${so}\:{at}\:{d}=\frac{\mathrm{2}}{\mathrm{3}}\:\:{the}\:{product}\:{is}\:{maximum}\:{and}\:{d}=\frac{\mathrm{8}}{\mathrm{5}} \\ $$$${it}\:{is}\:{minimum}… \\ $$$${now}\:{a}+\mathrm{5}{d}=\mathrm{2} \\ $$$${a}+\mathrm{5}×\frac{\mathrm{8}}{\mathrm{5}}=\mathrm{2}\:\:\:{a}=−\mathrm{6} \\ $$$${a}_{\mathrm{1}} ×{a}_{\mathrm{4}} ×{a}_{\mathrm{5}} \\ $$$$\left(−\mathrm{6}\right)×\left(−\mathrm{6}+\mathrm{3}×\frac{\mathrm{8}}{\mathrm{5}}\right)\left(−\mathrm{6}+\mathrm{4}×\frac{\mathrm{8}}{\mathrm{5}}\right) \\ $$$$=\left(−\mathrm{6}\right)×\left(\frac{−\mathrm{30}+\mathrm{24}}{\mathrm{5}}\right)\left(\frac{−\mathrm{30}+\mathrm{32}}{\mathrm{5}}\right) \\ $$$$=\left(−\mathrm{6}\right)×\left(\frac{−\mathrm{6}}{\mathrm{5}}\right)\left(\frac{\mathrm{2}}{\mathrm{5}}\right)=\frac{\mathrm{72}}{\mathrm{25}}\:\:{pls}\:{check}…. \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *