Menu Close

Thr-value-of-0-pi-2-cosec-x-pi-3-cosec-x-pi-6-dx-is-




Question Number 75924 by benjo last updated on 21/Dec/19
Thr value of   ∫_(0 ) ^(π/2) cosec (x−(π/3))cosec (x−(π/6))dx  is
Thrvalueofπ/20cosec(xπ3)cosec(xπ6)dxis
Commented by mathmax by abdo last updated on 21/Dec/19
I =∫_0 ^(π/2)  (dx/(sin(x−(π/3))sin(x−(π/6))))   but we have  sin(x−(π/3))sin(x−(π/6)) =cos((π/2)−x+(π/3))cos((π/2)−x +(π/6))  =cos(((5π)/6)−x)cos(((2π)/3)−x)  =(1/2){ cos(((5π)/6)+((2π)/3)−2x) +cos(((5π)/6)−x−((2π)/3)+x)}  =(1/2){cos(((3π)/2)−2x) +cos((π/6))}=(1/2){cos(−(π/2)−2x)+((√3)/2)}  =(1/2){((√3)/2)−sin(2x)} ⇒I =2 ∫_0 ^(π/2)   (dx/(((√3)/2)−sin(2x)))  =4 ∫_0 ^(π/2)   (dx/( (√3)−2sin(2x))) =_(2x=t) 4 ∫_0 ^π   (dt/(2((√3)−2sint)))  =2 ∫_0 ^π   (dt/( (√3)−2sin(t))) =_(tan((t/2))=u)    2∫_0 ^(+∞)   (1/( (√3)−2((2u)/(1+u^2 ))))((2du)/(1+u^2 ))  =4 ∫_0 ^∞    (du/( (√3)+(√3)u^2 −4u)) =4 ∫_0 ^∞   (du/( (√3)u^2 −4u +(√3)))  Δ^′  =(−2)^2 −3 =1 ⇒u_1 =((2+1)/( (√3))) =(3/( (√3))) =(√3)  u_2 =((2−1)/( (√3))) =(1/( (√3))) ⇒I =4 ∫_0 ^∞   (du/( (√3)(u−(√3))(u−(1/( (√3))))))  =(4/( (√3)))×(1/( (√3)−(1/( (√3)))))∫_0 ^∞   ((1/(u−(√3)))−(1/(u−(1/( (√3))))))du  =2  ln∣((u−(√3))/(u−(1/( (√3)))))∣ +c  =2ln∣((tan(x)−(√3))/(tan(x)−(1/( (√3)))))∣ +c
I=0π2dxsin(xπ3)sin(xπ6)butwehavesin(xπ3)sin(xπ6)=cos(π2x+π3)cos(π2x+π6)=cos(5π6x)cos(2π3x)=12{cos(5π6+2π32x)+cos(5π6x2π3+x)}=12{cos(3π22x)+cos(π6)}=12{cos(π22x)+32}=12{32sin(2x)}I=20π2dx32sin(2x)=40π2dx32sin(2x)=2x=t40πdt2(32sint)=20πdt32sin(t)=tan(t2)=u20+1322u1+u22du1+u2=40du3+3u24u=40du3u24u+3Δ=(2)23=1u1=2+13=33=3u2=213=13I=40du3(u3)(u13)=43×13130(1u31u13)du=2lnu3u13+c=2lntan(x)3tan(x)13+c
Commented by benjo last updated on 22/Dec/19
thanks sir
thankssir
Commented by abdomathmax last updated on 23/Dec/19
you are welcome.
youarewelcome.

Leave a Reply

Your email address will not be published. Required fields are marked *