Menu Close

Two-integers-x-and-y-are-chosen-with-replacement-out-of-the-set-0-1-2-3-10-Then-the-probability-that-x-y-gt-5-is-




Question Number 26851 by jain50791@gmail.com last updated on 30/Dec/17
Two integers x and y are chosen with  replacement out of the set {0, 1, 2, 3,..., 10}.  Then the probability that ∣x−y∣>5 is
Twointegersxandyarechosenwithreplacementoutoftheset{0,1,2,3,,10}.Thentheprobabilitythatxy∣>5is
Commented by Rasheed.Sindhi last updated on 30/Dec/17
Let x>y  ∣x−y∣>5⇒x−y>5⇒x>y+5  y=0⇒x=6,7,...,10 (5 values)       [5  Satisfying pairs]  y=1⇒x=7,8,...,10  (4 values)  y=2⇒x=8,...,10  (3 values)  y=3⇒x=9,10  (2 values)  y=4⇒x=10  (1 values)  Total satifying pairs: 15 for x>y  ∵ (a,b) satisfy⇒(b,a) also satisfy  Total satifying pairs: 15 for x<y  [Note that for x=y no pair satisfy]  Hence number of all pairs which  satisfy ∣x−y∣>5 is 15+15=30  Number of all possible pairs of the  domain set     =11×11=121  Probability=((Number of satisfying pairs)/(Number of total pairs))  Probability=((30)/(121))
Letx>yxy∣>5xy>5x>y+5y=0x=6,7,,10(5values)[5Satisfyingpairs]y=1x=7,8,,10(4values)y=2x=8,,10(3values)y=3x=9,10(2values)y=4x=10(1values)Totalsatifyingpairs:15forx>y(a,b)satisfy(b,a)alsosatisfyTotalsatifyingpairs:15forx<y[Notethatforx=ynopairsatisfy]Hencenumberofallpairswhichsatisfyxy∣>5is15+15=30Numberofallpossiblepairsofthedomainset=11×11=121Probability=NumberofsatisfyingpairsNumberoftotalpairsProbability=30121

Leave a Reply

Your email address will not be published. Required fields are marked *