Menu Close

when-tan-2-1-a-then-find-cos-from-the-a-




Question Number 193423 by mustafazaheen last updated on 13/Jun/23
when   tan(θ/2)=(1/a)  then find cosθ=? from the a
whentanθ2=1athenfindcosθ=?fromthea
Answered by AST last updated on 13/Jun/23
tan((θ/2)+(θ/2))=((2tan((θ/2)))/(1−tan^2 ((θ/2))))⇒tan(θ)=((2a)/(a^2 −1))  sec^2 (θ)=1+tan^2 θ=1+((4a^2 )/((a^2 −1)^2 ))=(((a^2 −1)^2 +4a^2 )/((a^2 −1)^2 ))  ⇒cosθ=((a^2 −1)/( (√((a^2 +1)^2 ))))=((a^2 −1)/(a^2 +1))=1−(2/(a^2 +1))
tan(θ2+θ2)=2tan(θ2)1tan2(θ2)tan(θ)=2aa21sec2(θ)=1+tan2θ=1+4a2(a21)2=(a21)2+4a2(a21)2cosθ=a21(a2+1)2=a21a2+1=12a2+1
Commented by mustafazaheen last updated on 13/Jun/23
 T
T
Answered by Subhi last updated on 13/Jun/23
cos(θ)=1−2sin^2 ((θ/2)) = 2cos^2 ((θ/2))−1  sin((θ/2))=(√((1−cos(θ))/2))  cos((θ/2))=(√((1+cos(θ))/2))  ((sin((θ/2)))/(cos((θ/2))))=tan((θ/2))=(1/a)=(√((1−cos(θ))/(1+cos(θ))))  a^2 (1−cos(θ))=1+cos(θ) ⇛ a^2 −1=(1+a^2 )cos(θ)  cos(θ)=((a^2 −1)/(a^2 +1))
cos(θ)=12sin2(θ2)=2cos2(θ2)1sin(θ2)=1cos(θ)2cos(θ2)=1+cos(θ)2sin(θ2)cos(θ2)=tan(θ2)=1a=1cos(θ)1+cos(θ)a2(1cos(θ))=1+cos(θ)a21=(1+a2)cos(θ)cos(θ)=a21a2+1
Commented by mustafazaheen last updated on 13/Jun/23
 ⋛
Commented by York12 last updated on 16/Jun/23
 ⋛
Answered by BaliramKumar last updated on 13/Jun/23
cosθ = ((1−tan^2 ((θ/2)))/(1+tan^2 ((θ/2)))) = ((1−((1/a))^2 )/(1+((1/a))^2 )) =  ((1−(1/a^2 ))/(1+(1/a^2 )))   cosθ = ((a^2 −1)/(a^2 +1))  pythagorean triplet⇒ 2a_(P) , (a^2 −1)_(B) , (a^2 +1)_(H)   tanθ = ((2a)/(a^2 −1))
cosθ=1tan2(θ2)1+tan2(θ2)=1(1a)21+(1a)2=11a21+1a2cosθ=a21a2+1pythagoreantriplet2aP,(a21)B,(a2+1)Htanθ=2aa21

Leave a Reply

Your email address will not be published. Required fields are marked *