Menu Close

x-3-1-1-3-dx-solution-




Question Number 193426 by 073 last updated on 13/Jun/23
∫((x^3 +1))^(1/3) dx=?  solution?
x3+13dx=?solution?
Answered by witcher3 last updated on 15/Jun/23
x^3 =t  ∫(x^3 +1)^(1/3) dx=f(x)  (1/3)∫(t+1)^(1/3) t^(−(2/3)) dt  (t+1)^(1/3) =1+Σ_(k≥1) ((Π_(j=1) ^k ((4/3)−j))/((k)!))t^k   (1/3)∫t^(−(2/3)) +Σ_(k≥1) (((−1)^k Γ(k−(1/3)))/(Γ(k+1)Γ(−(1/3))))t^(k−(2/3)) dt  =t^(1/3) +(1/3)Σ_(k≥1) ((Γ(k−(1/3))(−1)^k )/(Γ(−(1/3))(k+(1/3))))(t^(k+(1/3)) /(k!))+c  t^(1/3) (1+(1/3)Σ_(k≥1) ((Γ(k−(1/3)))/(Γ(−(1/3)))).((Γ(k+(1/3)))/(Γ(k+(4/3)))).(((−t)^k )/(k!)))+c  (1/3)=((Γ((4/3)))/(Γ((1/3))))  ⇔t^(1/3) (1+Σ_(k≥1) ((Γ(k−(1/3)))/(Γ(−(1/3)))).(((Γ(k+(1/3)))/(Γ((1/3))))/((Γ(k+(4/3)))/(Γ((4/3))))).(((−t)^k )/(k!)))+c  (a)_k =((Γ(a+k))/(Γ(a)))  t^(1/3) (1+Σ_(k≥1) (((−(1/3))_k ((1/3))_k )/(((4/3))_k )).(((−t)^k )/(k!)))+c  t^(1/3)  _2 F_1 (−(1/3),(1/3);(4/3),−t)+c  f(x)=x_2 F_1 (−(1/3),(1/3);(4/3),−x^3 )+c,c∈R
x3=t(x3+1)13dx=f(x)13(t+1)13t23dt(t+1)13=1+k1kj=1(43j)(k)!tk13t23+k1(1)kΓ(k13)Γ(k+1)Γ(13)tk23dt=t13+13k1Γ(k13)(1)kΓ(13)(k+13)tk+13k!+ct13(1+13k1Γ(k13)Γ(13).Γ(k+13)Γ(k+43).(t)kk!)+c13=Γ(43)Γ(13)t13(1+k1Γ(k13)Γ(13).Γ(k+13)Γ(13)Γ(k+43)Γ(43).(t)kk!)+c(a)k=Γ(a+k)Γ(a)t13(1+k1(13)k(13)k(43)k.(t)kk!)+ct132F1(13,13;43,t)+cf(x)=x2F1(13,13;43,x3)+c,cR

Leave a Reply

Your email address will not be published. Required fields are marked *