Question Number 193410 by cortano12 last updated on 13/Jun/23
$$\:\:\begin{cases}{\mathrm{x}=\sqrt{\mathrm{3}−\sqrt{\mathrm{5}+\mathrm{2}\sqrt{\mathrm{3}}}}}\\{\mathrm{y}=\sqrt{\mathrm{3}+\sqrt{\mathrm{5}+\mathrm{2}\sqrt{\mathrm{3}}}}}\end{cases}\: \\ $$$$\:\:\:\:\underbrace{\boldsymbol{{x}}} \\ $$
Answered by aba last updated on 13/Jun/23
$$\mathrm{xy}=\sqrt{\mathrm{9}−\left(\mathrm{5}+\mathrm{2}\sqrt{\mathrm{3}}\right)}=\sqrt{\mathrm{4}−\mathrm{2}\sqrt{\mathrm{3}}}=\sqrt{\mathrm{3}}−\mathrm{1}\:\wedge\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{6} \\ $$$$\mathrm{x}+\mathrm{y}=\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{2xy}}=\sqrt{\mathrm{6}+\mathrm{2}\left(\sqrt{\mathrm{3}}−\mathrm{1}\right)}=\sqrt{\mathrm{4}+\mathrm{2}\sqrt{\mathrm{3}}}=\sqrt{\mathrm{3}}+\mathrm{1} \\ $$
Answered by Tinku Tara last updated on 13/Jun/23
$$\left({x}+{y}\right)^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}{xy} \\ $$$$=\mathrm{6}+\mathrm{2}\sqrt{\mathrm{9}−\mathrm{5}−\mathrm{2}\sqrt{\mathrm{3}}} \\ $$$$=\mathrm{6}+\mathrm{2}\sqrt{\mathrm{4}−\mathrm{2}\sqrt{\mathrm{3}}}\:\:\:\:\:\left(\mathrm{4}−\mathrm{2}\sqrt{\mathrm{3}}=\left(\sqrt{\mathrm{3}}−\sqrt{\mathrm{1}}\right)^{\mathrm{2}} \right) \\ $$$$=\mathrm{6}+\mathrm{2}\left(\sqrt{\mathrm{3}}−\mathrm{1}\right) \\ $$$$=\mathrm{4}+\mathrm{2}\sqrt{\mathrm{3}} \\ $$$$=\left(\sqrt{\mathrm{3}}+\sqrt{\mathrm{1}}\right)^{\mathrm{2}} \\ $$$${x}+{y}=\mathrm{1}+\sqrt{\mathrm{3}} \\ $$