Menu Close

x-4-x-1-4-x-5-dx-




Question Number 53357 by gunawan last updated on 20/Jan/19
∫  (((x^4 −x)^(1/4) )/x^5 ) dx =
$$\int\:\:\frac{\left({x}^{\mathrm{4}} −{x}\right)^{\mathrm{1}/\mathrm{4}} }{{x}^{\mathrm{5}} }\:{dx}\:= \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 21/Jan/19
∫(({x^4 (1−(1/x^3 ))}^(1/4) )/x^5 )dx  ∫(((1−(1/x^3 ))^(1/4) )/x^4 )dx  t^4 =1−(1/x^3 )  4t^3 dt=(0+(3/x^4 ))dx  ((4t^3 )/3)dt=(dx/x^4 )  ∫(((t^4 )^(1/4) ×((4t^3 )/3)dt)/1)×  (4/3)∫t^4 dt  (4/(15))×t^5 +c  (4/(15))×(1−(1/x^3 ))^(5/4) +c
$$\int\frac{\left\{{x}^{\mathrm{4}} \left(\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\right)\right\}^{\frac{\mathrm{1}}{\mathrm{4}}} }{{x}^{\mathrm{5}} }{dx} \\ $$$$\int\frac{\left(\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\right)^{\frac{\mathrm{1}}{\mathrm{4}}} }{{x}^{\mathrm{4}} }{dx} \\ $$$${t}^{\mathrm{4}} =\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{3}} } \\ $$$$\mathrm{4}{t}^{\mathrm{3}} {dt}=\left(\mathrm{0}+\frac{\mathrm{3}}{{x}^{\mathrm{4}} }\right){dx} \\ $$$$\frac{\mathrm{4}{t}^{\mathrm{3}} }{\mathrm{3}}{dt}=\frac{{dx}}{{x}^{\mathrm{4}} } \\ $$$$\int\frac{\left({t}^{\mathrm{4}} \right)^{\frac{\mathrm{1}}{\mathrm{4}}} ×\frac{\mathrm{4}{t}^{\mathrm{3}} }{\mathrm{3}}{dt}}{\mathrm{1}}× \\ $$$$\frac{\mathrm{4}}{\mathrm{3}}\int{t}^{\mathrm{4}} {dt} \\ $$$$\frac{\mathrm{4}}{\mathrm{15}}×{t}^{\mathrm{5}} +{c} \\ $$$$\frac{\mathrm{4}}{\mathrm{15}}×\left(\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{3}} }\right)^{\frac{\mathrm{5}}{\mathrm{4}}} +{c} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *