Menu Close

X-and-Y-can-do-a-work-in-30-days-and-60-days-respectively-If-they-work-on-alternate-days-beginning-with-X-in-how-many-days-will-the-work-be-completed-




Question Number 25295 by Mr eaay last updated on 07/Dec/17
X and Y can do a work in 30 days and  60 days respectively. If they work on  alternate days beginning with X, in  how many days will the work be  completed?
$$\mathrm{X}\:\mathrm{and}\:\mathrm{Y}\:\mathrm{can}\:\mathrm{do}\:\mathrm{a}\:\mathrm{work}\:\mathrm{in}\:\mathrm{30}\:\mathrm{days}\:\mathrm{and} \\ $$$$\mathrm{60}\:\mathrm{days}\:\mathrm{respectively}.\:\mathrm{If}\:\mathrm{they}\:\mathrm{work}\:\mathrm{on} \\ $$$$\mathrm{alternate}\:\mathrm{days}\:\mathrm{beginning}\:\mathrm{with}\:\mathrm{X},\:\mathrm{in} \\ $$$$\mathrm{how}\:\mathrm{many}\:\mathrm{days}\:\mathrm{will}\:\mathrm{the}\:\mathrm{work}\:\mathrm{be} \\ $$$$\mathrm{completed}? \\ $$
Answered by mrW1 last updated on 07/Dec/17
(1/(30))+(1/(60))=(1/(20))  i.e. X and Y can do (1/(20)) of the work in  one day. To complete the work each  of them needs 20 days. i.e. in 40 days  the work will be completed.
$$\frac{\mathrm{1}}{\mathrm{30}}+\frac{\mathrm{1}}{\mathrm{60}}=\frac{\mathrm{1}}{\mathrm{20}} \\ $$$${i}.{e}.\:{X}\:{and}\:{Y}\:{can}\:{do}\:\frac{\mathrm{1}}{\mathrm{20}}\:{of}\:{the}\:{work}\:{in} \\ $$$${one}\:{day}.\:{To}\:{complete}\:{the}\:{work}\:{each} \\ $$$${of}\:{them}\:{needs}\:\mathrm{20}\:{days}.\:{i}.{e}.\:{in}\:\mathrm{40}\:{days} \\ $$$${the}\:{work}\:{will}\:{be}\:{completed}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *