Question Number 43626 by peter frank last updated on 12/Sep/18
$$\int\:\frac{{x}\:\mathrm{cos}\:{x}+\mathrm{1}}{\:\sqrt{\mathrm{2}{x}^{\mathrm{3}} {e}^{\mathrm{sin}\:{x}} +{x}^{\mathrm{2}} }}\:{dx}\:= \\ $$
Answered by MJS last updated on 15/Sep/18
$$\int\frac{\mathrm{1}+{x}\mathrm{cos}\:{x}}{\:\sqrt{\mathrm{2}{x}^{\mathrm{3}} \mathrm{e}^{\mathrm{sin}\:{x}} +{x}^{\mathrm{2}} }}{dx}=\int\frac{\mathrm{1}+{x}\mathrm{cos}\:{x}}{{x}\sqrt{\mathrm{2}{x}\mathrm{e}^{\mathrm{sin}\:{x}} +\mathrm{1}}}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{2}{x}\mathrm{e}^{\mathrm{sin}\:{x}} +\mathrm{1}\:\rightarrow\:{dx}=\frac{{dt}}{\mathrm{2e}^{\mathrm{sin}\:{x}} \left(\mathrm{1}+{x}\mathrm{cos}\:{x}\right)}\right] \\ $$$$=\int\frac{{dt}}{\left({t}−\mathrm{1}\right)\sqrt{{t}}}= \\ $$$$\:\:\:\:\:\left[{u}=\sqrt{{t}}\:\rightarrow\:{dt}=\mathrm{2}\sqrt{{u}}{du}\right] \\ $$$$=\mathrm{2}\int\frac{{du}}{{u}^{\mathrm{2}} −\mathrm{1}}=\mathrm{2}\int\frac{{du}}{\left({u}−\mathrm{1}\right)\left({u}+\mathrm{1}\right)}=\int\frac{{du}}{{u}−\mathrm{1}}−\int\frac{{du}}{{u}+\mathrm{1}}= \\ $$$$=\mathrm{ln}\left({u}−\mathrm{1}\right)−\mathrm{ln}\left({u}+\mathrm{1}\right)=\mathrm{ln}\:\frac{{u}−\mathrm{1}}{{u}+\mathrm{1}}\:= \\ $$$$=\mathrm{ln}\:\frac{\sqrt{{t}}−\mathrm{1}}{\:\sqrt{{t}}+\mathrm{1}}\:=\mathrm{ln}\:\mid\frac{\sqrt{\mathrm{2}{x}\mathrm{e}^{\mathrm{sin}\:{x}} +\mathrm{1}}−\mathrm{1}}{\:\sqrt{\mathrm{2}{x}\mathrm{e}^{\mathrm{sin}\:{x}} +\mathrm{1}}+\mathrm{1}}\mid\:+{C} \\ $$