Menu Close

Proof-cot-1-1-sint-1-sint-1-sint-1-sint-t-2-




Question Number 193467 by aba last updated on 14/Jun/23
Proof :  cot^(−1) ((((√(1+sint))+(√(1−sint)))/( (√(1+sint))−(√(1−sint)))))=(t/2)
Proof:cot1(1+sint+1sint1+sint1sint)=t2
Commented by MM42 last updated on 14/Jun/23
attention  in all  three arguments  we used equalities  that the relationship such as  “(√(1−sin^2 x))=cosx ” or “ (sinx+cosx)^2 =1+sin2x” or “(sinx−cosx)^2 =1−sin2x”   which may not  always hold.
attentioninallthreeargumentsweusedequalitiesthattherelationshipsuchas1sin2x=cosxor(sinx+cosx)2=1+sin2xor(sinxcosx)2=1sin2xwhichmaynotalwayshold.
Commented by Frix last updated on 15/Jun/23
Yes. We get  cot^(−1)  ((1+∣cos t∣)/(sin t)) =(t/2)  Which is only true for  −(π/2)≤t≤(π/2)
Yes.Wegetcot11+costsint=t2Whichisonlytrueforπ2tπ2
Commented by MM42 last updated on 15/Jun/23
attention  if  f(x)=tanx ⇒ for  ∀x ∈(  (((2k−1)π)/2) , (((2k+1)π)/2))  →  R_f = R   ⇒  ∃  f^(−1) (x)=tan^(−1) (x)    &  D_f^(−1)  =R   &  R_f^(−1)  =(− (π/2) , (π/2))   tan : (  (((2k−1)π)/2) , (((2k+1)π)/2))  → R   ⇔ tan^(−1)  : R → (−(π/2) , (π/2))     if  f(x)=cotx ⇒ for  ∀x ∈(  kπ, (k+1)π)  →  R_f = R   ⇒  ∃  f^(−1) (x)=cot^(−1) (x)    &  D_f^(−1)  =R   &  R_f^(−1)  =(0 , π)   cot : (  kπ , (k−1)π)  → R   ⇔ cot^(−1)  : R → (0, π)     therefore if   cot^(−1) ((/))=(t/2)⇒  0<(t/2)<π⇒0<t<2π
attentioniff(x)=tanxforx((2k1)π2,(2k+1)π2)Rf=Rf1(x)=tan1(x)&Df1=R&Rf1=(π2,π2)tan:((2k1)π2,(2k+1)π2)Rtan1:R(π2,π2)iff(x)=cotxforx(kπ,(k+1)π)Rf=Rf1(x)=cot1(x)&Df1=R&Rf1=(0,π)cot:(kπ,(k1)π)Rcot1:R(0,π)thereforeifcot1()=t20<t2<π0<t<2π
Answered by Frix last updated on 14/Jun/23
(((√(1+s))+(√(1−s)))/( (√(1+s))−(√(1−s))))=  =((((√(1+s))+(√(1−s)))^2 )/( ((√(1+s))−(√(1−s)))((√(1+s))+(√(1−s)))))=  =((1+cos t)/(sin t))=cot (t/2)
1+s+1s1+s1s==(1+s+1s)2(1+s1s)(1+s+1s)==1+costsint=cott2
Answered by Subhi last updated on 14/Jun/23
((((√(1+sin(t)))+(√(1−sin(t))))/( (√(1+sin(t)))−(√(1−sin(t)))))).(((√(1+sin(t)))/( (√(1+sin(t))))))=cot((t/2))  ((1+sin(t)+(√(1−sin^2 (t))))/(1+sin(t)−(√(1−sin^2 (t)))))=((1+sin(t)+cos(t))/(1+sin(t)−cos(t)))  ((1+2sin((t/2)).cos((t/2))+2cos^2 ((t/2))−1)/(1+2sin((t/2))cos((t/2))−1+2sin^2 ((t/2))))  ((2cos((t/2))(sin((t/2))+cos((t/2))))/(2sin((t/2))(sin((t/2))+cos((t/2)))))=cot((t/2))
(1+sin(t)+1sin(t)1+sin(t)1sin(t)).(1+sin(t)1+sin(t))=cot(t2)1+sin(t)+1sin2(t)1+sin(t)1sin2(t)=1+sin(t)+cos(t)1+sin(t)cos(t)1+2sin(t2).cos(t2)+2cos2(t2)11+2sin(t2)cos(t2)1+2sin2(t2)2cos(t2)(sin(t2)+cos(t2))2sin(t2)(sin(t2)+cos(t2))=cot(t2)
Answered by MM42 last updated on 14/Jun/23
S1  A=cot^(−1) ((((√(1+sint))+(√(1−sint)))/( (√(1+sint))−(√(1−sint)))))=  cot^(−1) ((((√((cos(t/2)+sin(t/2))^2 ))+(√((cos(t/2)−sin(t/2))^2 )))/( (√((cos(t/2)+sin(t/2))^2 ))−(√((cos(t/2)−sin(t/2))^2 )))))  ⇒A=cot^(−1) (((cos(t/2))/(sin(t/2))))=(t/2)  S2   let  tan(t/2)=u  A=cot^(−1) ((((√(1+((2u)/(1+u^2 ))))+(√(1−((2u)/(1+u^2 )))))/( (√(1+((2u)/(1+u^2 ))))−(√(1−((2u)/(1+u^2 )))))))=  cot^(−1) ((((√((1+u)^2 ))+(√((1−u)^2 )))/( (√((1+u)^2 ))−(√((1−u)^2 )))))=  cot^(−1) ((2/( 2u)))=cot^(−1) (u)=(t/2)
S1A=cot1(1+sint+1sint1+sint1sint)=cot1((cost2+sint2)2+(cost2sint2)2(cost2+sint2)2(cost2sint2)2)A=cot1(cost2sint2)=t2S2lettant2=uA=cot1(1+2u1+u2+12u1+u21+2u1+u212u1+u2)=cot1((1+u)2+(1u)2(1+u)2(1u)2)=cot1(22u)=cot1(u)=t2

Leave a Reply

Your email address will not be published. Required fields are marked *