Menu Close

Question-193486




Question Number 193486 by Mingma last updated on 15/Jun/23
Answered by Subhi last updated on 15/Jun/23
x^x .ln(x)=ln(y)  ln(x^x .ln(x))=ln(ln(y))⇛ xln(x)+ln(ln(x))=ln(ln(y))  ln(x)+x.(1/x)+(1/(x.ln(x)))=(1/(y.ln(y))).(dy/dx)  (dy/dx)=x^x .x^x^x  .ln(x)(((xln^2 (x)+xln(x)+1)/(xln(x))))=x^(x^x +x−1) (xln^2 (x)+xln(x)+1)
$${x}^{{x}} .{ln}\left({x}\right)={ln}\left({y}\right) \\ $$$${ln}\left({x}^{{x}} .{ln}\left({x}\right)\right)={ln}\left({ln}\left({y}\right)\right)\Rrightarrow\:{xln}\left({x}\right)+{ln}\left({ln}\left({x}\right)\right)={ln}\left({ln}\left({y}\right)\right) \\ $$$${ln}\left({x}\right)+{x}.\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{x}.{ln}\left({x}\right)}=\frac{\mathrm{1}}{{y}.{ln}\left({y}\right)}.\frac{{dy}}{{dx}} \\ $$$$\frac{{dy}}{{dx}}={x}^{{x}} .{x}^{{x}^{{x}} } .{ln}\left({x}\right)\left(\frac{{xln}^{\mathrm{2}} \left({x}\right)+{xln}\left({x}\right)+\mathrm{1}}{{xln}\left({x}\right)}\right)={x}^{{x}^{{x}} +{x}−\mathrm{1}} \left({xln}^{\mathrm{2}} \left({x}\right)+{xln}\left({x}\right)+\mathrm{1}\right) \\ $$$$ \\ $$
Commented by Mingma last updated on 15/Jun/23
Perfect ��

Leave a Reply

Your email address will not be published. Required fields are marked *