Question Number 193563 by SaRahAli last updated on 16/Jun/23
Answered by Gamil last updated on 16/Jun/23
Answered by Subhi last updated on 16/Jun/23
$$ \\ $$$${lim}_{{x}\rightarrow\frac{\pi}{\mathrm{4}}} \frac{{sin}^{\mathrm{3}} \left({x}\right)−{cos}^{\mathrm{3}} \left({x}\right).\left(\frac{\pi}{\mathrm{4}}−{x}\right)}{{sin}\left(\frac{\pi}{\mathrm{4}}−{x}\right)\left(\frac{\pi}{\mathrm{4}}−{x}\right)} \\ $$$${lim}_{{x}\rightarrow\frac{\pi}{\mathrm{4}}} \frac{{sin}^{\mathrm{3}} \left({x}\right)−{cos}^{\mathrm{3}} \left({x}\right)}{\left(\frac{\pi}{\mathrm{4}}−{x}\right)}\:\Rrightarrow\frac{\left({sin}\left({x}\right)−{cos}\left({x}\right)\right)\left(\left(\left({sin}\left({x}\right)+{cos}\left({x}\right)\right)^{\mathrm{2}} −{sin}\left({x}\right){cos}\left({x}\right)\right)\right.}{\left(\frac{\pi}{\mathrm{4}}−{x}\right)} \\ $$$${lim}_{{x}\rightarrow\frac{\pi}{\mathrm{4}}} \frac{−{cos}\left(\mathrm{2}{x}\right)\left({sin}\left({x}\right)+{cos}\left({x}\right)\right)}{\left(\frac{\pi}{\mathrm{4}}−{x}\right)}+\frac{\left({cos}\left({x}\right)−{sin}\left({x}\right){sin}\left(\mathrm{2}{x}\right)\right.}{\mathrm{2}\left(\frac{\pi}{\mathrm{4}}−{x}\right)}.\frac{{sin}\left({x}\right)+{cos}\left({x}\right)}{{sin}\left({x}\right)+{cos}\left({x}\right)}\: \\ $$$$\:{lim}_{{x}\rightarrow\frac{\pi}{\mathrm{4}}} \frac{−{sin}\left(\mathrm{2}\left(\frac{\pi}{\mathrm{4}}−{x}\right)\right)\left({sin}\left({x}\right)+{cos}\left({x}\right)\right)}{\left(\frac{\pi}{\mathrm{4}}−{x}\right)}+\frac{{sin}\left(\mathrm{4}\left(\frac{\pi}{\mathrm{4}}−{x}\right)\right.}{\mathrm{4}\left(\frac{\pi}{\mathrm{4}}−{x}\right).\left({sin}\left({x}\right)+{cos}\left({x}\right)\right)} \\ $$$${lim}_{{x}\rightarrow\frac{\pi}{\mathrm{4}}} −\mathrm{2}\left({sin}\left({x}\right)+{cos}\left({x}\right)\right)+\frac{\mathrm{1}}{{sin}\left({x}\right)+{cos}\left({x}\right)}=−\mathrm{2}\sqrt{\mathrm{2}}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}=\frac{−\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$
Answered by mnjuly1970 last updated on 16/Jun/23
$$ \\ $$$$\:\:\:\:{lim}_{\:{x}\rightarrow\frac{\pi}{\mathrm{4}}} \:\frac{{sin}^{\:\mathrm{3}} \left({x}\right)−{cos}^{\:\mathrm{3}} \left({x}\right)}{{sin}\left(\frac{\pi}{\mathrm{4}}\:−{x}\right)}\:=? \\ $$$$\:\:\:\:\:\:{lim}_{\:{x}\rightarrow\frac{\pi}{\mathrm{4}}} \:\frac{−\sqrt{\mathrm{2}}\:{sin}\left(\frac{\pi}{\mathrm{4}}\:−{x}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\:{sin}\left(\mathrm{2}{x}\right)\right)}{{sin}\left(\frac{\pi}{\mathrm{4}\:}\:−{x}\right)} \\ $$$$\:\:\:\:\:\:=\:−\sqrt{\mathrm{2}}\:.\:\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\:{sin}\left(\frac{\pi}{\mathrm{2}}\right)\right)=−\frac{\mathrm{3}\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\:\:\:{hint}\::\:\:{sin}\left({x}\right)−{cos}\left({x}\right)=\sqrt{\mathrm{2}}\:{sin}\left({x}−\frac{\pi}{\mathrm{4}}\right) \\ $$$$\:\:\:\:{sin}^{\:\mathrm{3}} \left({x}\right)−{cos}^{\:\mathrm{3}} \left({x}\right)=\left({sin}\left({x}\right)−{cos}\left({x}\right)\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\:{sin}\left(\mathrm{2}{x}\right)\right) \\ $$$$\:\:\:\:\:\:\:\blacksquare \\ $$$$ \\ $$