Menu Close

There-exists-a-unique-positive-integer-a-for-which-The-sum-u-n-1-2023-n-2-na-5-is-an-integer-trictly-between-1000-amp-1000-find-a-u-




Question Number 193585 by York12 last updated on 16/Jun/23
  There exists a unique positive integer a for  which The sum u  = Σ_(n=1) ^(2023) ⌊((n^2 −na)/5)⌋ is an integer  trictly between −1000 & 1000 find a+u.
ThereexistsauniquepositiveintegeraforwhichThesumu=2023n=1n2na5isanintegertrictlybetween1000&1000finda+u.
Answered by York12 last updated on 16/Jun/23
    u=Σ_(n=1) ^(2023) ⌊((n^2 −na)/5)⌋ , ⌊((n^2 −na)/5)⌋=((n^2 −na)/5)−{((n^2 −na)/5)}  where {⊛} indicates the fractional   part function   0≤{((n^2 −na)/5)}<1 ⇒ 0≤Σ_(n=1) ^(2023) {((n^2 −na)/5)}<2023  −1000<Σ_(n=1) ^(2023) ⌊((n^2 −na)/5)⌋<1000 ⇒ 0<Σ_(n=1) ^(2023) (((n^2 −na)/5))−Σ_(n=1) ^(2023) {((n^2 −na)/5)}<1000  ⇒−3023<Σ_(n=1) ^(2023) (((n^2 −na)/5))<1000  ⇒−3023<((Σ_(n=1) ^(2023) (n^2 ))/5)−((aΣ_(n=1) ^(2023) (n))/5)<1000  ⇒5×(3023+((Σ_(n=1) ^(2023) (n^2 ))/5))>a>5×(((Σ_(n=1) ^(2023) (n))/5)−1000)  ⇒ 1349.007>a>1348.998 ⇒ a=1349  ∴u=Σ_(n=1) ^(2023) ⌊((n^2 −1349n)/5)⌋=Σ_(n=1) ^(2023) (((n^2 −1349n)/5))−Σ_(n=1) ^(2023) {((n^2 −1349n)/5)}  Σ_(n=1) ^(2023) (((n^2 −1349n)/5))=0 ⇒ u=−Σ_(n=1) ^(2023) {((n^2 −1349n)/5)}  so now we are only intrested in the value  of the Remainder of the expression  ((n^2 −1349n)/5)  , one of the special properties  of mod (5) & mod (10) that   a_n a_(n−1) a_(n−2) a_(n−2) ...a_1 a_0  ≡ a_0  mod (5)  a_n a_(n−1) a_(n−2) a_(n−2) ...a_1 a_0  ≡ a_0  mod(10)  Σ_(n=1) ^(2023) {((n^2 −1349n)/5)}=⌊((2023)/5)⌋Σ_(n=1) ^5 ((((((n^2 −1349n)/5))mod(5))/5))+Σ_(n=1) ^(2023 mod(5)) ((((((n^2 −1349n)/5))mod(5))/5))  Σ_(n=1) ^5 ((((((n^2 −1349n)/5))mod(5))/5))=1 , Σ_(n=1) ^(2023 mod(5)) ((((((n^2 −1349n)/5))mod(5))/5))=1  ⇒u= −1×((404×1)+1)=−405  ⇒ u +a =944
\boldsymbolu=2023\boldsymboln=1\boldsymboln2\boldsymbolna5,\boldsymboln2\boldsymbolna5=\boldsymboln2\boldsymbolna5{\boldsymboln2\boldsymbolna5}\boldsymbolwhere{}\boldsymbolindicates\boldsymbolthe\boldsymbolfractional\boldsymbolpart\boldsymbolfunction0{\boldsymboln2\boldsymbolna5}<102023\boldsymboln=1{\boldsymboln2\boldsymbolna5}<20231000<2023\boldsymboln=1\boldsymboln2\boldsymbolna5<10000<2023\boldsymboln=1(\boldsymboln2\boldsymbolna5)2023\boldsymboln=1{\boldsymboln2\boldsymbolna5}<10003023<2023\boldsymboln=1(\boldsymboln2\boldsymbolna5)<10003023<2023\boldsymboln=1(\boldsymboln2)5\boldsymbola2023\boldsymboln=1(\boldsymboln)5<10005×(3023+2023\boldsymboln=1(\boldsymboln2)5)>\boldsymbola>5×(2023\boldsymboln=1(\boldsymboln)51000)1349.007>a>1348.998a=1349\boldsymbolu=2023\boldsymboln=1\boldsymboln21349\boldsymboln5=2023\boldsymboln=1(\boldsymboln21349\boldsymboln5)2023\boldsymboln=1{\boldsymboln21349\boldsymboln5}2023\boldsymboln=1(\boldsymboln21349\boldsymboln5)=0\boldsymbolu=2023\boldsymboln=1{\boldsymboln21349\boldsymboln5}\boldsymbolso\boldsymbolnow\boldsymbolwe\boldsymbolare\boldsymbolonly\boldsymbolintrested\boldsymbolin\boldsymbolthe\boldsymbolvalue\boldsymbolof\boldsymbolthe\boldsymbolRemainder\boldsymbolof\boldsymbolthe\boldsymbolexpression\boldsymboln21349\boldsymboln5,\boldsymbolone\boldsymbolof\boldsymbolthe\boldsymbolspecial\boldsymbolproperties\boldsymbolof\boldsymbolmod(5)&\boldsymbolmod(10)\boldsymbolthat\boldsymbola\boldsymboln\boldsymbola\boldsymboln1\boldsymbola\boldsymboln2\boldsymbola\boldsymboln2\boldsymbola1\boldsymbola0\boldsymbola0\boldsymbolmod(5)\boldsymbola\boldsymboln\boldsymbola\boldsymboln1\boldsymbola\boldsymboln2\boldsymbola\boldsymboln2\boldsymbola1\boldsymbola0\boldsymbola0\boldsymbolmod(10)2023\boldsymboln=1{\boldsymboln21349\boldsymboln5}=202355\boldsymboln=1((\boldsymboln21349\boldsymboln5)\boldsymbolmod(5)5)+2023\boldsymbolmod(5)\boldsymboln=1((\boldsymboln21349\boldsymboln5)\boldsymbolmod(5)5)5\boldsymboln=1((\boldsymboln21349\boldsymboln5)\boldsymbolmod(5)5)=1,2023\boldsymbolmod(5)\boldsymboln=1((\boldsymboln21349\boldsymboln5)\boldsymbolmod(5)5)=1\boldsymbolu=1×((404×1)+1)=405\boldsymbolu+\boldsymbola=944

Leave a Reply

Your email address will not be published. Required fields are marked *