There-exists-a-unique-positive-integer-a-for-which-The-sum-u-n-1-2023-n-2-na-5-is-an-integer-trictly-between-1000-amp-1000-find-a-u- Tinku Tara June 16, 2023 None 0 Comments FacebookTweetPin Question Number 193585 by York12 last updated on 16/Jun/23 ThereexistsauniquepositiveintegeraforwhichThesumu=∑2023n=1⌊n2−na5⌋isanintegertrictlybetween−1000&1000finda+u. Answered by York12 last updated on 16/Jun/23 u=∑2023n=1⌊n2−na5⌋,⌊n2−na5⌋=n2−na5−{n2−na5}where{⊛}indicatesthefractionalpartfunction0⩽{n2−na5}<1⇒0⩽∑2023n=1{n2−na5}<2023−1000<∑2023n=1⌊n2−na5⌋<1000⇒0<∑2023n=1(n2−na5)−∑2023n=1{n2−na5}<1000⇒−3023<∑2023n=1(n2−na5)<1000⇒−3023<∑2023n=1(n2)5−a∑2023n=1(n)5<1000⇒5×(3023+∑2023n=1(n2)5)>a>5×(∑2023n=1(n)5−1000)⇒1349.007>a>1348.998⇒a=1349∴u=∑2023n=1⌊n2−1349n5⌋=∑2023n=1(n2−1349n5)−∑2023n=1{n2−1349n5}∑2023n=1(n2−1349n5)=0⇒u=−∑2023n=1{n2−1349n5}sonowweareonlyintrestedinthevalueoftheRemainderoftheexpressionn2−1349n5,oneofthespecialpropertiesofmod(5)&mod(10)thatanan−1an−2an−2…a1a0≡a0mod(5)anan−1an−2an−2…a1a0≡a0mod(10)∑2023n=1{n2−1349n5}=⌊20235⌋∑5n=1((n2−1349n5)mod(5)5)+∑2023mod(5)n=1((n2−1349n5)mod(5)5)∑5n=1((n2−1349n5)mod(5)5)=1,∑2023mod(5)n=1((n2−1349n5)mod(5)5)=1⇒u=−1×((404×1)+1)=−405⇒u+a=944 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-193521Next Next post: Question-193526 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.