There-exists-a-unique-positive-integer-a-for-which-The-sum-u-n-1-2023-n-2-na-5-is-an-integer-trictly-between-1000-amp-1000-find-a-u- Tinku Tara June 16, 2023 None 0 Comments FacebookTweetPin Question Number 193585 by York12 last updated on 16/Jun/23 ThereexistsauniquepositiveintegeraforwhichThesumu=∑2023n=1⌊n2−na5⌋isanintegertrictlybetween−1000&1000finda+u. Answered by York12 last updated on 16/Jun/23 \boldsymbolu=∑2023\boldsymboln=1⌊\boldsymboln2−\boldsymbolna5⌋,⌊\boldsymboln2−\boldsymbolna5⌋=\boldsymboln2−\boldsymbolna5−{\boldsymboln2−\boldsymbolna5}\boldsymbolwhere{⊛}\boldsymbolindicates\boldsymbolthe\boldsymbolfractional\boldsymbolpart\boldsymbolfunction0⩽{\boldsymboln2−\boldsymbolna5}<1⇒0⩽∑2023\boldsymboln=1{\boldsymboln2−\boldsymbolna5}<2023−1000<∑2023\boldsymboln=1⌊\boldsymboln2−\boldsymbolna5⌋<1000⇒0<∑2023\boldsymboln=1(\boldsymboln2−\boldsymbolna5)−∑2023\boldsymboln=1{\boldsymboln2−\boldsymbolna5}<1000⇒−3023<∑2023\boldsymboln=1(\boldsymboln2−\boldsymbolna5)<1000⇒−3023<∑2023\boldsymboln=1(\boldsymboln2)5−\boldsymbola∑2023\boldsymboln=1(\boldsymboln)5<1000⇒5×(3023+∑2023\boldsymboln=1(\boldsymboln2)5)>\boldsymbola>5×(∑2023\boldsymboln=1(\boldsymboln)5−1000)⇒1349.007>a>1348.998⇒a=1349∴\boldsymbolu=∑2023\boldsymboln=1⌊\boldsymboln2−1349\boldsymboln5⌋=∑2023\boldsymboln=1(\boldsymboln2−1349\boldsymboln5)−∑2023\boldsymboln=1{\boldsymboln2−1349\boldsymboln5}∑2023\boldsymboln=1(\boldsymboln2−1349\boldsymboln5)=0⇒\boldsymbolu=−∑2023\boldsymboln=1{\boldsymboln2−1349\boldsymboln5}\boldsymbolso\boldsymbolnow\boldsymbolwe\boldsymbolare\boldsymbolonly\boldsymbolintrested\boldsymbolin\boldsymbolthe\boldsymbolvalue\boldsymbolof\boldsymbolthe\boldsymbolRemainder\boldsymbolof\boldsymbolthe\boldsymbolexpression\boldsymboln2−1349\boldsymboln5,\boldsymbolone\boldsymbolof\boldsymbolthe\boldsymbolspecial\boldsymbolproperties\boldsymbolof\boldsymbolmod(5)&\boldsymbolmod(10)\boldsymbolthat\boldsymbola\boldsymboln\boldsymbola\boldsymboln−1\boldsymbola\boldsymboln−2\boldsymbola\boldsymboln−2…\boldsymbola1\boldsymbola0≡\boldsymbola0\boldsymbolmod(5)\boldsymbola\boldsymboln\boldsymbola\boldsymboln−1\boldsymbola\boldsymboln−2\boldsymbola\boldsymboln−2…\boldsymbola1\boldsymbola0≡\boldsymbola0\boldsymbolmod(10)∑2023\boldsymboln=1{\boldsymboln2−1349\boldsymboln5}=⌊20235⌋∑5\boldsymboln=1((\boldsymboln2−1349\boldsymboln5)\boldsymbolmod(5)5)+∑2023\boldsymbolmod(5)\boldsymboln=1((\boldsymboln2−1349\boldsymboln5)\boldsymbolmod(5)5)∑5\boldsymboln=1((\boldsymboln2−1349\boldsymboln5)\boldsymbolmod(5)5)=1,∑2023\boldsymbolmod(5)\boldsymboln=1((\boldsymboln2−1349\boldsymboln5)\boldsymbolmod(5)5)=1⇒\boldsymbolu=−1×((404×1)+1)=−405⇒\boldsymbolu+\boldsymbola=944 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-193521Next Next post: Question-193526 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.