Menu Close

There-exists-a-unique-positive-integer-a-for-which-The-sum-u-n-1-2023-n-2-na-5-is-an-integer-trictly-between-1000-amp-1000-find-a-u-




Question Number 193585 by York12 last updated on 16/Jun/23
  There exists a unique positive integer a for  which The sum u  = Σ_(n=1) ^(2023) ⌊((n^2 −na)/5)⌋ is an integer  trictly between −1000 & 1000 find a+u.
ThereexistsauniquepositiveintegeraforwhichThesumu=2023n=1n2na5isanintegertrictlybetween1000&1000finda+u.
Answered by York12 last updated on 16/Jun/23
    u=Σ_(n=1) ^(2023) ⌊((n^2 −na)/5)⌋ , ⌊((n^2 −na)/5)⌋=((n^2 −na)/5)−{((n^2 −na)/5)}  where {⊛} indicates the fractional   part function   0≤{((n^2 −na)/5)}<1 ⇒ 0≤Σ_(n=1) ^(2023) {((n^2 −na)/5)}<2023  −1000<Σ_(n=1) ^(2023) ⌊((n^2 −na)/5)⌋<1000 ⇒ 0<Σ_(n=1) ^(2023) (((n^2 −na)/5))−Σ_(n=1) ^(2023) {((n^2 −na)/5)}<1000  ⇒−3023<Σ_(n=1) ^(2023) (((n^2 −na)/5))<1000  ⇒−3023<((Σ_(n=1) ^(2023) (n^2 ))/5)−((aΣ_(n=1) ^(2023) (n))/5)<1000  ⇒5×(3023+((Σ_(n=1) ^(2023) (n^2 ))/5))>a>5×(((Σ_(n=1) ^(2023) (n))/5)−1000)  ⇒ 1349.007>a>1348.998 ⇒ a=1349  ∴u=Σ_(n=1) ^(2023) ⌊((n^2 −1349n)/5)⌋=Σ_(n=1) ^(2023) (((n^2 −1349n)/5))−Σ_(n=1) ^(2023) {((n^2 −1349n)/5)}  Σ_(n=1) ^(2023) (((n^2 −1349n)/5))=0 ⇒ u=−Σ_(n=1) ^(2023) {((n^2 −1349n)/5)}  so now we are only intrested in the value  of the Remainder of the expression  ((n^2 −1349n)/5)  , one of the special properties  of mod (5) & mod (10) that   a_n a_(n−1) a_(n−2) a_(n−2) ...a_1 a_0  ≡ a_0  mod (5)  a_n a_(n−1) a_(n−2) a_(n−2) ...a_1 a_0  ≡ a_0  mod(10)  Σ_(n=1) ^(2023) {((n^2 −1349n)/5)}=⌊((2023)/5)⌋Σ_(n=1) ^5 ((((((n^2 −1349n)/5))mod(5))/5))+Σ_(n=1) ^(2023 mod(5)) ((((((n^2 −1349n)/5))mod(5))/5))  Σ_(n=1) ^5 ((((((n^2 −1349n)/5))mod(5))/5))=1 , Σ_(n=1) ^(2023 mod(5)) ((((((n^2 −1349n)/5))mod(5))/5))=1  ⇒u= −1×((404×1)+1)=−405  ⇒ u +a =944
u=2023n=1n2na5,n2na5=n2na5{n2na5}where{}indicatesthefractionalpartfunction0{n2na5}<102023n=1{n2na5}<20231000<2023n=1n2na5<10000<2023n=1(n2na5)2023n=1{n2na5}<10003023<2023n=1(n2na5)<10003023<2023n=1(n2)5a2023n=1(n)5<10005×(3023+2023n=1(n2)5)>a>5×(2023n=1(n)51000)1349.007>a>1348.998a=1349u=2023n=1n21349n5=2023n=1(n21349n5)2023n=1{n21349n5}2023n=1(n21349n5)=0u=2023n=1{n21349n5}sonowweareonlyintrestedinthevalueoftheRemainderoftheexpressionn21349n5,oneofthespecialpropertiesofmod(5)&mod(10)thatanan1an2an2a1a0a0mod(5)anan1an2an2a1a0a0mod(10)2023n=1{n21349n5}=202355n=1((n21349n5)mod(5)5)+2023mod(5)n=1((n21349n5)mod(5)5)5n=1((n21349n5)mod(5)5)=1,2023mod(5)n=1((n21349n5)mod(5)5)=1u=1×((404×1)+1)=405u+a=944

Leave a Reply

Your email address will not be published. Required fields are marked *