Menu Close

Question-193596




Question Number 193596 by Mingma last updated on 17/Jun/23
Answered by cortano12 last updated on 17/Jun/23
(1) γ=1  (2) lim_(x→0)  ((e^x −2αx−β)/(2x))=(3/2)    β=1    (3) lim_(x→0)  ((e^x −2α)/2)=(3/2)    α= −1   ∴ lim_(x→0)  ((e^x +x^2 −x−1)/x^2 ) = (3/2)
$$\left(\mathrm{1}\right)\:\gamma=\mathrm{1} \\ $$$$\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{e}^{\mathrm{x}} −\mathrm{2}\alpha\mathrm{x}−\beta}{\mathrm{2x}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\:\:\beta=\mathrm{1}\: \\ $$$$\:\left(\mathrm{3}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{e}^{\mathrm{x}} −\mathrm{2}\alpha}{\mathrm{2}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\:\:\alpha=\:−\mathrm{1} \\ $$$$\:\therefore\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{e}^{\mathrm{x}} +\mathrm{x}^{\mathrm{2}} −\mathrm{x}−\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\:=\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$
Commented by Mingma last updated on 17/Jun/23
Perfect ��
Answered by mnjuly1970 last updated on 17/Jun/23
  lim(( 1+x +(x^2 /2) +o(x^( 3) )−αx^( 2) −βx−γ)/x^( 2) )=(3/2)       γ=1 , β=1       (1/2) −α= (3/2) ⇒ α=−1
$$\:\:{lim}\frac{\:\mathrm{1}+{x}\:+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:+{o}\left({x}^{\:\mathrm{3}} \right)−\alpha{x}^{\:\mathrm{2}} −\beta{x}−\gamma}{{x}^{\:\mathrm{2}} }=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\gamma=\mathrm{1}\:,\:\beta=\mathrm{1} \\ $$$$\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\:−\alpha=\:\frac{\mathrm{3}}{\mathrm{2}}\:\Rightarrow\:\alpha=−\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *