Menu Close

Question-193669




Question Number 193669 by Rupesh123 last updated on 17/Jun/23
Answered by AST last updated on 18/Jun/23
cos(x+y)+isin(x+y)=e^(i(x+y)) =e^(ix) e^(iy)   =(cos(x)+isin(x))(cos(y)+isin(y))  =cos(x)cos(y)−sin(x)cos(y)+icos(x)sin(y)+isin(x)cos(y)  Comparing real parts  ⇒cos(x+y)=cos(x)cos(y)−sin(x)cos(y)
$${cos}\left({x}+{y}\right)+{isin}\left({x}+{y}\right)={e}^{{i}\left({x}+{y}\right)} ={e}^{{ix}} {e}^{{iy}} \\ $$$$=\left({cos}\left({x}\right)+{isin}\left({x}\right)\right)\left({cos}\left({y}\right)+{isin}\left({y}\right)\right) \\ $$$$={cos}\left({x}\right){cos}\left({y}\right)−{sin}\left({x}\right){cos}\left({y}\right)+{icos}\left({x}\right){sin}\left({y}\right)+{isin}\left({x}\right){cos}\left({y}\right) \\ $$$${Comparing}\:{real}\:{parts} \\ $$$$\Rightarrow{cos}\left({x}+{y}\right)={cos}\left({x}\right){cos}\left({y}\right)−{sin}\left({x}\right){cos}\left({y}\right) \\ $$
Commented by Rupesh123 last updated on 18/Jun/23
Perfect ��

Leave a Reply

Your email address will not be published. Required fields are marked *