Menu Close

show-that-c-e-1-z-2-dz-0-when-z-lt-1-




Question Number 193670 by mokys last updated on 17/Jun/23
show that ∫_c  e^(1/z^2 )  dz = 0 when ∣z∣ <1
showthatce1z2dz=0whenz<1
Commented by mokys last updated on 17/Jun/23
?????
?????
Answered by Rajpurohith last updated on 19/Jun/23
You need to be aware that for ∣z∣<1  except for   z=0 , the function f(z)=e^(1/z^2 )  is a power series.  However dont try to use Residue theorem!!!   as z=0 is an isolated essential singularity.  i.e, for z≠0 and ∣z∣<1 , e^(1/z^2 ) =1+Σ_(n=1) ^∞ (1/z^(2n) )  If C: ∣z∣=1,  I=∮_C e^((1/z^2 ) ) dz=∮_C (1+Σ_(n=1) ^∞ (1/z^(2n) ))=0+Σ_(n=1) ^∞ {∮_C (1/z^(2n) )dz}  C : ∣z∣=1 in polar form looks like,  (r=1,0≤θ≤2π) so z = e^(iθ)  ,  0≤θ≤2π  I=Σ_(n=0) ^∞ {∫_0 ^( 2π) (1/e^(2inθ) ) .i.e^(iθ)  dθ}=i.Σ_(n=0) ^∞ {∫_0 ^( 2π) (dθ/e^((2n−1)iθ) )}  =iΣ_(n=0) ^∞ {∫_0 ^( 2π) e^((1−2n)iθ) dθ}=((1/i).(i/(1−2n)))Σ_(n=0) ^∞ {e^((1−2n)iθ) }_0 ^(2π)   =(1/(1−2n)) Σ_(n=0) ^∞ (e^((1−2n)2πi) −1)=0     ■
Youneedtobeawarethatforz∣<1exceptforz=0,thefunctionf(z)=e1z2isapowerseries.HoweverdonttrytouseResiduetheorem!!!asz=0isanisolatedessentialsingularity.i.e,forz0andz∣<1,e1z2=1+n=11z2nIfC:z∣=1,I=Ce1z2dz=C(1+n=11z2n)=0+n=1{C1z2ndz}C:z∣=1inpolarformlookslike,(r=1,0θ2π)soz=eiθ,0θ2πI=n=0{02π1e2inθ.i.eiθdθ}=i.n=0{02πdθe(2n1)iθ}=in=0{02πe(12n)iθdθ}=(1i.i12n)n=0{e(12n)iθ}02π=112nn=0(e(12n)2πi1)=0◼

Leave a Reply

Your email address will not be published. Required fields are marked *