Question Number 193688 by Mingma last updated on 18/Jun/23
Answered by cortano12 last updated on 18/Jun/23
$$\:\mathrm{4}\left(\mathrm{2p}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{4}.\left(−\mathrm{1}\right).\left(−\mathrm{2p}−\mathrm{31}\right)<\mathrm{0} \\ $$$$\:\mathrm{4p}^{\mathrm{2}} +\mathrm{4p}+\mathrm{1}−\mathrm{2p}−\mathrm{31}<\mathrm{0} \\ $$$$\:\mathrm{4p}^{\mathrm{2}} +\mathrm{2p}−\mathrm{30}<\mathrm{0} \\ $$$$\:\mathrm{2p}^{\mathrm{2}} +\mathrm{p}−\mathrm{15}<\mathrm{0} \\ $$$$\:\left(\mathrm{2p}\:−\mathrm{5}\right)\left(\mathrm{p}+\mathrm{3}\right)<\mathrm{0} \\ $$$$\:−\mathrm{3}<\mathrm{p}<\frac{\mathrm{5}}{\mathrm{2}} \\ $$$$\:\mathrm{the}\:\mathrm{largest}\:\mathrm{positive}\:\mathrm{integer}\:\mathrm{p}\:\mathrm{is}\:\mathrm{2}\: \\ $$
Commented by Mingma last updated on 18/Jun/23
Perfect