Menu Close

Question-193691




Question Number 193691 by cortano12 last updated on 18/Jun/23
$$ \\ $$
Commented by cortano12 last updated on 18/Jun/23
Answered by MM42 last updated on 18/Jun/23
∠PAQ=28  & ∠AQP=120  ▲APQ : ((AP)/(sin120))=((10)/(sin28))⇒AP=((5(√3))/(sin28))  ▲ABP : AB=APsin56=((5(√3)sin56)/(sin28))=10(√3)cos28
$$\angle{PAQ}=\mathrm{28}\:\:\&\:\angle{AQP}=\mathrm{120} \\ $$$$\blacktriangle{APQ}\::\:\frac{{AP}}{{sin}\mathrm{120}}=\frac{\mathrm{10}}{{sin}\mathrm{28}}\Rightarrow{AP}=\frac{\mathrm{5}\sqrt{\mathrm{3}}}{{sin}\mathrm{28}} \\ $$$$\blacktriangle{ABP}\::\:{AB}={APsin}\mathrm{56}=\frac{\mathrm{5}\sqrt{\mathrm{3}}{sin}\mathrm{56}}{{sin}\mathrm{28}}=\mathrm{10}\sqrt{\mathrm{3}}{cos}\mathrm{28} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *