Question Number 193707 by Mingma last updated on 18/Jun/23
Answered by Subhi last updated on 18/Jun/23
$$\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }+\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} +{c}^{\mathrm{2}} }+\frac{{c}^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }+\mathrm{3}=\underset{{cyc}} {\sum}\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} } \\ $$$$\mathrm{2}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)\left(\frac{\mathrm{1}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{{a}^{\mathrm{2}} +{c}^{\mathrm{2}} }+\frac{\mathrm{1}}{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }\right)\geqslant\left(\mathrm{1}+\mathrm{1}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{9}\:\left({chauchy\_schwartz}\right) \\ $$$$\therefore\:\underset{{cyc}} {\sum}\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }\geqslant\frac{\mathrm{9}}{\mathrm{2}}−\mathrm{3}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\therefore\:{cos}^{\mathrm{2}} \left(\alpha\right)+{cos}^{\mathrm{2}} \left(\beta\right)+{cos}^{\mathrm{2}} \left(\gamma\right)\geqslant\frac{\mathrm{3}}{\mathrm{4}}\:\left({proof}\right) \\ $$$${cos}^{\mathrm{2}} \left(\alpha\right)=\frac{{cos}\left(\mathrm{2}\alpha\right)+\mathrm{1}}{\mathrm{2}} \\ $$$$\frac{{cos}\left(\mathrm{2}\alpha\right)+{cos}\left(\mathrm{2}\beta\right)+{cos}\left(\mathrm{2}\gamma\right)+\mathrm{3}}{\mathrm{2}}\geqslant\frac{\mathrm{3}}{\mathrm{4}} \\ $$$${cos}\left(\mathrm{2}\alpha\right)+{cos}\left(\mathrm{2}\beta\right)=\mathrm{2}{cos}\left(\alpha+\beta\right){cos}\left(\alpha−\beta\right) \\ $$$$\mathrm{2}{cos}\left(\alpha+\beta\right){cos}\left(\alpha−\beta\right)+\mathrm{2}{cos}^{\mathrm{2}} \left(\gamma\right)+\mathrm{2}\geqslant\frac{\mathrm{3}}{\mathrm{2}}\:\left({required}\right) \\ $$$$\alpha+\beta=\mathrm{180}−\gamma\:\Rrightarrow\:{cos}\left(\alpha+\beta\right)=−{cos}\left(\gamma\right) \\ $$$$\mathrm{2}{cos}^{\mathrm{2}} \left(\gamma\right)−\mathrm{2}{cos}\left(\alpha−\beta\right){cos}\left(\gamma\right)+\mathrm{2} \\ $$$$\mathrm{2}\left({cos}\left(\gamma\right)−\frac{{cos}\left(\alpha−\beta\right)}{\mathrm{2}}\right)^{\mathrm{2}} −\frac{{cos}^{\mathrm{2}} \left(\alpha−\beta\right)}{\mathrm{2}}+\mathrm{2} \\ $$$${cos}^{\mathrm{2}} \left(\alpha−\beta\right)=\mathrm{1}−{sin}^{\mathrm{2}} \left(\alpha−\beta\right) \\ $$$$\mathrm{2}\left({cos}\left(\gamma\right)−\frac{{cos}\left(\alpha−\beta\right)}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{{sin}^{\mathrm{2}} \left(\alpha−\beta\right)}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{2} \\ $$$$\mathrm{2}\left({cos}\left(\gamma\right)−\frac{{cos}\left(\alpha−\beta\right)}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{{sin}^{\mathrm{2}} \left(\alpha−\beta\right)}{\mathrm{2}}+\frac{\mathrm{3}}{\mathrm{2}}\geqslant\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${note}\:{that}\:{sin}^{\mathrm{2}} \:,\:\left(\:\:\right)^{\mathrm{2}} \:\geqslant\mathrm{0} \\ $$$$\therefore\:\mathrm{2}\underset{{cyc}} {\sum}{cos}^{\mathrm{2}} \left(\alpha\right)\geqslant\underset{{cyc}} {\sum}\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} } \\ $$
Commented by Mingma last updated on 18/Jun/23
Ver nice solution, sir!
Commented by York12 last updated on 04/Mar/24
$$\therefore\:\underset{{cyc}} {\sum}\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }\geqslant\frac{\mathrm{9}}{\mathrm{2}}−\mathrm{3}=\frac{\mathrm{3}}{\mathrm{2}}\:\:\mathrm{how}\:\mathrm{is}\:\mathrm{that}\:\mathrm{useful}\: \\ $$$$ \\ $$