Question Number 193719 by mr W last updated on 18/Jun/23
Commented by mr W last updated on 18/Jun/23
$${the}\:{thin}\:{rope}\:{consists}\:{of}\:{two}\:{uniform} \\ $$$${parts}: \\ $$$${part}\:\mathrm{1}:\:{length}\:{l}_{\mathrm{1}} ,\:{mass}\:{m}_{\mathrm{1}} \\ $$$${part}\:\mathrm{2}:\:{length}\:{l}_{\mathrm{2}} ,\:{mass}\:{m}_{\mathrm{2}} \\ $$$${assume}\:{l}_{\mathrm{2}} >{l}_{\mathrm{1}} ,\:{m}_{\mathrm{2}} >{m}_{\mathrm{1}} . \\ $$$${find}\:{the}\:{position}\:{of}\:{the}\:{lowest}\:{point}\: \\ $$$${of}\:{the}\:{rope}. \\ $$
Answered by mr W last updated on 18/Jun/23
Commented by mr W last updated on 25/Jun/23
$$\rho_{\mathrm{1}} =\frac{{m}_{\mathrm{1}} }{{l}_{\mathrm{1}} } \\ $$$$\rho_{\mathrm{2}} =\frac{{m}_{\mathrm{2}} }{{l}_{\mathrm{2}} } \\ $$$${a}_{\mathrm{1}} =\frac{{T}_{\mathrm{0}} }{\rho_{\mathrm{1}} {g}}=\frac{{l}_{\mathrm{1}} {T}_{\mathrm{0}} }{{m}_{\mathrm{1}} {g}} \\ $$$${a}_{\mathrm{2}} =\frac{{T}_{\mathrm{0}} }{\rho_{\mathrm{2}} {g}}=\frac{{l}_{\mathrm{2}} {T}_{\mathrm{0}} }{{m}_{\mathrm{2}} {g}} \\ $$$${y}_{{B}} ={a}_{\mathrm{1}} \:\mathrm{cosh}\:\frac{{x}_{{B}} }{{a}_{\mathrm{1}} } \\ $$$${y}_{{C}} ={y}_{{B}} +{d}={a}_{\mathrm{1}} \:\mathrm{cosh}\:\frac{{x}_{{B}} +{b}_{\mathrm{1}} }{{a}_{\mathrm{1}} } \\ $$$${d}={a}_{\mathrm{1}} \:\left(\mathrm{cosh}\:\frac{{x}_{{B}} +{b}_{\mathrm{1}} }{{a}_{\mathrm{1}} }−\mathrm{cosh}\:\frac{{x}_{{B}} }{{a}_{\mathrm{1}} }\right) \\ $$$${l}_{\mathrm{1}} ={a}_{\mathrm{1}} \:\left(\mathrm{sinh}\:\frac{{x}_{{B}} +{b}_{\mathrm{1}} }{{a}_{\mathrm{1}} }−\mathrm{sinh}\:\frac{{x}_{{B}} }{{a}_{\mathrm{1}} }\right) \\ $$$$\mathrm{tan}\:\varphi=\mathrm{sinh}\:\frac{{x}_{{B}} }{{a}_{\mathrm{1}} } \\ $$$$\Rightarrow{x}_{{B}} ={a}_{\mathrm{1}} \:\mathrm{sinh}^{−\mathrm{1}} \:\mathrm{tan}\:\varphi={ka}_{\mathrm{1}} \\ $$$$\Rightarrow\mathrm{cosh}\:\left({k}+\frac{{b}_{\mathrm{1}} }{{a}_{\mathrm{1}} }\right)−\mathrm{cosh}\:{k}=\frac{{d}}{{a}_{\mathrm{1}} } \\ $$$$\Rightarrow\mathrm{sinh}\:\left({k}+\frac{{b}_{\mathrm{1}} }{{a}_{\mathrm{1}} }\right)−\mathrm{sinh}\:{k}=\frac{{l}_{\mathrm{1}} }{{a}_{\mathrm{1}} } \\ $$$${similarly} \\ $$$$\Rightarrow\mathrm{cosh}\:\left({k}+\frac{{b}_{\mathrm{2}} }{{a}_{\mathrm{2}} }\right)−\mathrm{cosh}\:{k}=\frac{{d}}{{a}_{\mathrm{2}} } \\ $$$$\Rightarrow\mathrm{sinh}\:\left({k}+\frac{{b}_{\mathrm{2}} }{{a}_{\mathrm{2}} }\right)+\mathrm{sinh}\:{k}=\frac{{l}_{\mathrm{2}} }{{a}_{\mathrm{2}} } \\ $$$${b}_{\mathrm{1}} +{b}_{\mathrm{2}} ={b} \\ $$$${as}\:{unknowns}\:{we}\:{have} \\ $$$${d},\:{k},\:{T}_{\mathrm{0}} ,\:{b}_{\mathrm{1}} ,\:{b}_{\mathrm{2}} \\ $$$$\frac{{b}_{\mathrm{1}} }{{a}_{\mathrm{1}} }=\mathrm{cosh}^{−\mathrm{1}} \:\left(\mathrm{cosh}\:{k}+\frac{{d}}{{a}_{\mathrm{1}} }\right)−{k} \\ $$$$\frac{{b}_{\mathrm{1}} }{{a}_{\mathrm{1}} }=\mathrm{sinh}^{−\mathrm{1}} \:\left(\mathrm{sinh}\:{k}+\frac{{l}_{\mathrm{1}} }{{a}_{\mathrm{1}} }\right)−{k} \\ $$$$\Rightarrow\mathrm{sinh}^{−\mathrm{1}} \:\left(\mathrm{sinh}\:{k}+\frac{{l}_{\mathrm{1}} }{{a}_{\mathrm{1}} }\right)=\mathrm{cosh}^{−\mathrm{1}} \:\left(\mathrm{cosh}\:{k}+\frac{{d}}{{a}_{\mathrm{1}} }\right) \\ $$$$\frac{{d}}{{a}_{\mathrm{1}} }=\sqrt{\mathrm{1}+\left(\mathrm{sinh}\:{k}+\frac{{l}_{\mathrm{1}} }{{a}_{\mathrm{1}} }\right)^{\mathrm{2}} }−\mathrm{cosh}\:{k} \\ $$$$\Rightarrow\mathrm{sinh}^{−\mathrm{1}} \:\left(−\mathrm{sinh}\:{k}+\frac{{l}_{\mathrm{2}} }{{a}_{\mathrm{2}} }\right)=\mathrm{cosh}^{−\mathrm{1}} \:\left(\mathrm{cosh}\:{k}+\frac{{d}}{{a}_{\mathrm{2}} }\right) \\ $$$$\frac{{d}}{{a}_{\mathrm{2}} }=\sqrt{\mathrm{1}+\left(−\mathrm{sinh}\:{k}+\frac{{l}_{\mathrm{2}} }{{a}_{\mathrm{2}} }\right)^{\mathrm{2}} }−\mathrm{cosh}\:{k} \\ $$$$\Rightarrow{a}_{\mathrm{1}} \left[\sqrt{\mathrm{1}+\left(\mathrm{sinh}\:{k}+\frac{{l}_{\mathrm{1}} }{{a}_{\mathrm{1}} }\right)^{\mathrm{2}} }−\mathrm{cosh}\:{k}\right]={a}_{\mathrm{2}} \left[\sqrt{\mathrm{1}+\left(−\mathrm{sinh}\:{k}+\frac{{l}_{\mathrm{2}} }{{a}_{\mathrm{2}} }\right)^{\mathrm{2}} }−\mathrm{cosh}\:{k}\right]\:\:\:…\left({i}\right) \\ $$$$\Rightarrow{a}_{\mathrm{1}} \left[\mathrm{cosh}^{−\mathrm{1}} \:\sqrt{\mathrm{1}+\left(\mathrm{sinh}\:{k}+\frac{{l}_{\mathrm{1}} }{{a}_{\mathrm{1}} }\right)^{\mathrm{2}} }−{k}\right]+{a}_{\mathrm{2}} \left[\mathrm{cosh}^{−\mathrm{1}} \:\sqrt{\mathrm{1}+\left(−\mathrm{sinh}\:{k}+\frac{{l}_{\mathrm{2}} }{{a}_{\mathrm{2}} }\right)^{\mathrm{2}} }−{k}\right]={b}\:\:\:…\left({ii}\right) \\ $$