Menu Close

Solve-arcsin-2x-arcsin-x-3-arcsin-x-




Question Number 193676 by lapache last updated on 18/Jun/23
Solve  arcsin(2x)+arcsin(x(√3))=arcsin(x)
Solvearcsin(2x)+arcsin(x3)=arcsin(x)
Answered by Frix last updated on 18/Jun/23
sin^(−1)  t ∈R ⇔ −1≤t≤1  f(x)=sin^(−1)  2x +sin^(−1)  (√3)x −sin^(−1)  x  −(1/2)≤x≤(1/2)  f′(x)=(2/( (√(1−4x^2 ))))+((√3)/( (√(1−3x^2 ))))−(1/( (√(1−x^2 ))))>0∀x∈(−(1/2); (1/2))  ⇒ only solution is x=0
sin1tR1t1f(x)=sin12x+sin13xsin1x12x12f(x)=214x2+313x211x2>0x(12;12)onlysolutionisx=0

Leave a Reply

Your email address will not be published. Required fields are marked *