Question Number 193760 by York12 last updated on 19/Jun/23
$${prove}\:{that} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{3}}{\mathrm{4}}×\frac{\mathrm{5}}{\mathrm{6}}×\frac{\mathrm{7}}{\mathrm{8}}×\frac{\mathrm{9}}{\mathrm{10}}…×\frac{\mathrm{99}}{\mathrm{100}}>\frac{\mathrm{1}}{\mathrm{13}}\:\:\: \\ $$
Answered by MM42 last updated on 19/Jun/23
$${can}\:{br}\:{show}\::\:\underset{{i}=\mathrm{1}} {\overset{{n}} {\prod}}\:\frac{\mathrm{2}{i}−\mathrm{1}}{\mathrm{2}{i}}\:>\:\frac{\mathrm{11}}{\mathrm{10}\sqrt{\mathrm{4}{n}+\mathrm{1}}} \\ $$$$\Rightarrow{for}\:\:{n}=\mathrm{50}\:{to}\:{have}\: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{3}}{\mathrm{4}}×…×\frac{\mathrm{99}}{\mathrm{100}}>\frac{\mathrm{11}}{\mathrm{10}\sqrt{\mathrm{201}}}>\frac{\mathrm{1}}{\mathrm{13}} \\ $$
Commented by York12 last updated on 19/Jun/23
$${sir}\:{where}\:{can}\:{I}\:{learn}\:{that}\: \\ $$
Commented by York12 last updated on 19/Jun/23
$$\frac{\mathrm{11}}{\mathrm{10}\sqrt{\mathrm{4}{n}+\mathrm{1}}}\:{how}\:{could}\:{you}\:{know}\:{that}\: \\ $$$${I}\:{feel}\:{like}\:{there}\:{is}\:{something}\:{I}\:{do}\:{not}\:{know} \\ $$
Commented by MM42 last updated on 19/Jun/23
$${s}.{i}\rightarrow{i}=\mathrm{1}\Rightarrow\frac{\mathrm{1}}{\mathrm{2}}>\frac{\mathrm{11}}{\mathrm{10}\sqrt{\mathrm{5}}}\Rightarrow\mathrm{125}>\mathrm{121}\:\checkmark \\ $$$${i}.{h}\rightarrow{i}={k}\Rightarrow\underset{{i}=\mathrm{1}} {\overset{{k}} {\prod}}\:\:\frac{\mathrm{2}{i}−\mathrm{1}}{\mathrm{2}{i}}\:>\frac{\mathrm{11}}{\mathrm{10}\sqrt{\mathrm{4}{k}+\mathrm{1}}}\: \\ $$$${i}.{h}\rightarrow{i}={k}+\mathrm{1}\Rightarrow\underset{{i}=\mathrm{1}} {\overset{{k}+\mathrm{1}} {\prod}}\:\:\frac{\mathrm{2}{i}−\mathrm{1}}{\mathrm{2}{i}}\:>\frac{\mathrm{11}}{\mathrm{10}\sqrt{\mathrm{4}{k}+\mathrm{5}}}\:\: \\ $$$$\:\underset{{i}=\mathrm{1}} {\overset{{k}+\mathrm{1}} {\prod}}\:\:\frac{\mathrm{2}{i}−\mathrm{1}}{\mathrm{2}{i}}\:=\underset{{i}=\mathrm{1}} {\overset{{k}} {\prod}}\:\:\frac{\mathrm{2}{i}−\mathrm{1}}{\mathrm{2}{i}}\:×\frac{\mathrm{2}{k}+\mathrm{1}}{\mathrm{2}{k}+\mathrm{2}}> \\ $$$$\frac{\mathrm{11}}{\mathrm{10}\sqrt{\mathrm{4}{k}+\mathrm{1}}}×\frac{\mathrm{2}{k}+\mathrm{1}}{\mathrm{2}{k}+\mathrm{2}}\:\:\overset{\bigstar} {>}\:\frac{\mathrm{11}}{\mathrm{10}\sqrt{\mathrm{4}{k}+\mathrm{5}}}\: \\ $$$$\: \\ $$$$\bigstar\rightarrow\left(\mathrm{2}{k}+\mathrm{1}\right)\sqrt{\mathrm{4}{k}+\mathrm{5}}>\left(\mathrm{2}{k}+\mathrm{2}\right)\sqrt{\mathrm{4}{k}+\mathrm{1}} \\ $$$$\left(\mathrm{4}{k}^{\mathrm{2}} +\mathrm{4}{k}+\mathrm{1}\right)\left(\mathrm{4}{k}+\mathrm{5}\right)>\mathrm{4}\left({k}^{\mathrm{2}} +\mathrm{2}{k}+\mathrm{1}\right)\left(\mathrm{4}{k}+\mathrm{1}\right) \\ $$$$\mathrm{16}{k}^{\mathrm{3}} +\mathrm{36}{k}^{\mathrm{2}} +\mathrm{24}{k}+\mathrm{5}>\mathrm{16}{k}^{\mathrm{3}} +\mathrm{36}{k}^{\mathrm{2}} +\mathrm{24}{k}+\mathrm{4} \\ $$$$\mathrm{5}>\mathrm{1}\:\checkmark\:{it}\:{always}\:{exists} \\ $$$$ \\ $$
Commented by York12 last updated on 20/Jun/23
$${that}\:{is}\:{proof}\:{by}\:{inductions} \\ $$$${but}\:{sir}\:{can}\:{you}\:{recommend}\:{me}\:{a}\:{books}\:{to}\:{use} \\ $$$$,\:{I}\:{am}\:{preparing}\:{for}\:{IMO}\: \\ $$
Commented by MM42 last updated on 20/Jun/23
$${Hello}\:.{dear}\:{friend}.{i}\:{am}\:{a}\:{retired} \\ $$$${teacher}\:{frome}\:{iran}.{the}\:{books}\:{available}\:{to}\: \\ $$$${me}\:{are}\:{whith}\:{persian}\:{translation}. \\ $$$${but}\:{i}\:{will}\:{send}\:{you}\:{the}\:{names}\:{of}\:{some}\:{books}. \\ $$$${i}\:{hoopr}\:{it}\:{useful}\:{for}\:{you} \\ $$$${good}\:{luck}. \\ $$$$ \\ $$
Commented by MM42 last updated on 20/Jun/23
Commented by MM42 last updated on 20/Jun/23
Commented by MM42 last updated on 20/Jun/23
Commented by talminator2856792 last updated on 21/Jun/23
$$\:\:\mathrm{entertaining}\:\mathrm{mathematical}\:\mathrm{puzzles},\:\mathrm{martin}\:\mathrm{gardner}\:\: \\ $$
Commented by York12 last updated on 23/Jul/23
$${thanks}\:{so}\:{much}\:{sir} \\ $$