Menu Close

Let-n-amp-k-be-positive-integers-and-let-S-be-a-set-of-n-points-in-The-plane-such-that-For-any-point-P-of-S-there-are-at-least-K-points-of-S-Equidistant-from-p-Prove-that-k-lt-1-2-2n-




Question Number 193853 by York12 last updated on 21/Jun/23
  Let n & k be positive integers and let  S be a set of n points in The plane such that :  For any point P of S there are at least K points of S Equidistant from p  Prove that k<(1/2)+(√(2n))
$$ \\ $$$$\boldsymbol{{Let}}\:\boldsymbol{{n}}\:\&\:\boldsymbol{{k}}\:\boldsymbol{{be}}\:\boldsymbol{{positive}}\:\boldsymbol{{integers}}\:\boldsymbol{{and}}\:\boldsymbol{{let}} \\ $$$$\boldsymbol{{S}}\:\boldsymbol{{be}}\:\boldsymbol{{a}}\:\boldsymbol{{set}}\:\boldsymbol{{of}}\:\boldsymbol{{n}}\:\boldsymbol{{points}}\:\boldsymbol{{in}}\:\boldsymbol{{The}}\:\boldsymbol{{plane}}\:\boldsymbol{{such}}\:\boldsymbol{{that}}\:: \\ $$$$\boldsymbol{{For}}\:\boldsymbol{{any}}\:\boldsymbol{{point}}\:\boldsymbol{{P}}\:\boldsymbol{{of}}\:\boldsymbol{{S}}\:\boldsymbol{{there}}\:\boldsymbol{{are}}\:\boldsymbol{{at}}\:\boldsymbol{{least}}\:\boldsymbol{{K}}\:\boldsymbol{{points}}\:\boldsymbol{{of}}\:\boldsymbol{{S}}\:\boldsymbol{{Equidistant}}\:\boldsymbol{{from}}\:\boldsymbol{{p}} \\ $$$$\boldsymbol{{Prove}}\:\boldsymbol{{that}}\:\boldsymbol{{k}}<\frac{\mathrm{1}}{\mathrm{2}}+\sqrt{\mathrm{2}\boldsymbol{{n}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *