Menu Close

Ques-8-Find-the-signum-sign-or-sgn-of-the-permutation-12345678-Hint-for-any-permutation-take-sgn-1-if-is-odd-1-if-is-even-Ques-9-Prove-that




Question Number 193871 by Mastermind last updated on 21/Jun/23
Ques. 8        Find the signum (sign or sgn) of the  permutation θ=(12345678).  Hint : for any permutation β, take  sgn β = {_(−1       if β is odd) ^(1            if β is even)       Ques. 9       Prove that ∣S_n ∣ = n!.    Ques. 10        Provd that for b∈S_n , sgn b = sgn b^(−1)  .
$$\mathrm{Ques}.\:\mathrm{8}\: \\ $$$$\:\:\:\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{signum}\:\left(\mathrm{sign}\:\mathrm{or}\:\mathrm{sgn}\right)\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{permutation}\:\theta=\left(\mathrm{12345678}\right). \\ $$$$\mathrm{Hint}\::\:\mathrm{for}\:\mathrm{any}\:\mathrm{permutation}\:\beta,\:\mathrm{take} \\ $$$$\mathrm{sgn}\:\beta\:=\:\left\{_{−\mathrm{1}\:\:\:\:\:\:\:\mathrm{if}\:\beta\:\mathrm{is}\:\mathrm{odd}} ^{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{if}\:\beta\:\mathrm{is}\:\mathrm{even}} \right. \\ $$$$ \\ $$$$ \\ $$$$\mathrm{Ques}.\:\mathrm{9} \\ $$$$\:\:\:\:\:\mathrm{Prove}\:\mathrm{that}\:\mid\mathrm{S}_{\mathrm{n}} \mid\:=\:\mathrm{n}!. \\ $$$$ \\ $$$$\mathrm{Ques}.\:\mathrm{10} \\ $$$$\:\:\:\:\:\:\mathrm{Provd}\:\mathrm{that}\:\mathrm{for}\:\mathrm{b}\in\mathrm{S}_{\mathrm{n}} ,\:\mathrm{sgn}\:\mathrm{b}\:=\:\mathrm{sgn}\:\mathrm{b}^{−\mathrm{1}} \:. \\ $$
Commented by talminator2856792 last updated on 23/Jun/23
  what is source of these questions.      or book name.
$$\:\:\mathrm{what}\:\mathrm{is}\:\mathrm{source}\:\mathrm{of}\:\mathrm{these}\:\mathrm{questions}.\:\: \\ $$$$\:\:\mathrm{or}\:\mathrm{book}\:\mathrm{name}. \\ $$
Answered by Rajpurohith last updated on 22/Jun/23
(8) Clearly θ=(18)(17)(16)(15)(14)(13)(12)  which shows θ is an odd permutation.  hence sgn(θ)=−1.   ■  (9) S_n  denotes the set of all permutations of  a set of n elements say A={1,2,3,...n}.  [you know that S_n  forms  a group under function composition.]  let σ∈S_n  , so σ is a bijection.  How many choices do you have for σ(1)?  You have n choices.  And for σ(2)?  It must be (n−1) choices.  because you cannot choose the one you choosed  for σ(1).  [Suppose you choose σ(2)=σ(1) ,  ⇒2=1 as σ is bijective.]  so you cannot.  similarly there are (n−2) choices for σ(3).  .  .  .  There are 2 choices for σ(n−1)  And only one choice for σ(n).  By fundamental principle of counting,  we have n(n−1)(n−2)...2.1=n! such permutations  on n letters and they are the only permutations.  ⇒∣S_n ∣=n!        ■    (10)Let β∈S_n . Suppose β is even .  ⇒βoβ^(−1) =Id  ⇒sgn(βoβ^(−1) )=sgn(Id)=1  Suppose β^(−1 ) is odd   ⇒βoβ^(−1)  is odd ⇒sgn(βoβ^(−1) )=−1, a contradiction.  Hence β^(−1 )  is not odd  ⇒β^(−1)  must be even.  ⇒sgn(β^(−1) )=1=sgn(β)     Similar argument for odd.      ■
$$\left(\mathrm{8}\right)\:{Clearly}\:\theta=\left(\mathrm{18}\right)\left(\mathrm{17}\right)\left(\mathrm{16}\right)\left(\mathrm{15}\right)\left(\mathrm{14}\right)\left(\mathrm{13}\right)\left(\mathrm{12}\right) \\ $$$${which}\:{shows}\:\theta\:{is}\:{an}\:\boldsymbol{{odd}}\:{permutation}. \\ $$$${hence}\:{sgn}\left(\theta\right)=−\mathrm{1}.\:\:\:\blacksquare \\ $$$$\left(\mathrm{9}\right)\:{S}_{{n}} \:{denotes}\:{the}\:{set}\:{of}\:{all}\:{permutations}\:{of} \\ $$$${a}\:{set}\:{of}\:{n}\:{elements}\:{say}\:{A}=\left\{\mathrm{1},\mathrm{2},\mathrm{3},…{n}\right\}. \\ $$$$\left[{you}\:{know}\:{that}\:{S}_{{n}} \:{forms}\right. \\ $$$$\left.{a}\:{group}\:{under}\:{function}\:{composition}.\right] \\ $$$${let}\:\sigma\in{S}_{{n}} \:,\:{so}\:\sigma\:{is}\:{a}\:{bijection}. \\ $$$${How}\:{many}\:{choices}\:{do}\:{you}\:{have}\:{for}\:\sigma\left(\mathrm{1}\right)? \\ $$$$\boldsymbol{{You}}\:\boldsymbol{{have}}\:\boldsymbol{{n}}\:\boldsymbol{{choices}}. \\ $$$${And}\:{for}\:\sigma\left(\mathrm{2}\right)? \\ $$$$\boldsymbol{{It}}\:\boldsymbol{{must}}\:\boldsymbol{{be}}\:\left(\boldsymbol{{n}}−\mathrm{1}\right)\:\boldsymbol{{choices}}. \\ $$$${because}\:{you}\:{cannot}\:{choose}\:{the}\:{one}\:{you}\:{choosed} \\ $$$${for}\:\sigma\left(\mathrm{1}\right). \\ $$$$\left[{Suppose}\:{you}\:{choose}\:\sigma\left(\mathrm{2}\right)=\sigma\left(\mathrm{1}\right)\:,\right. \\ $$$$\left.\Rightarrow\mathrm{2}=\mathrm{1}\:{as}\:\sigma\:{is}\:{bijective}.\right] \\ $$$${so}\:{you}\:{cannot}. \\ $$$${similarly}\:{there}\:{are}\:\left({n}−\mathrm{2}\right)\:{choices}\:{for}\:\sigma\left(\mathrm{3}\right). \\ $$$$. \\ $$$$. \\ $$$$. \\ $$$${There}\:{are}\:\mathrm{2}\:{choices}\:{for}\:\sigma\left({n}−\mathrm{1}\right) \\ $$$${And}\:{only}\:{one}\:{choice}\:{for}\:\sigma\left({n}\right). \\ $$$${By}\:{fundamental}\:{principle}\:{of}\:{counting}, \\ $$$${we}\:{have}\:{n}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)…\mathrm{2}.\mathrm{1}=\boldsymbol{{n}}!\:{such}\:{permutations} \\ $$$${on}\:{n}\:{letters}\:{and}\:{they}\:{are}\:{the}\:{only}\:{permutations}. \\ $$$$\Rightarrow\mid\boldsymbol{{S}}_{\boldsymbol{{n}}} \mid=\boldsymbol{{n}}!\:\:\:\:\:\:\:\:\blacksquare \\ $$$$ \\ $$$$\left(\mathrm{10}\right){Let}\:\beta\in{S}_{{n}} .\:{Suppose}\:\beta\:{is}\:{even}\:. \\ $$$$\Rightarrow\beta{o}\beta^{−\mathrm{1}} ={Id} \\ $$$$\Rightarrow{sgn}\left(\beta{o}\beta^{−\mathrm{1}} \right)={sgn}\left({Id}\right)=\mathrm{1} \\ $$$${Suppose}\:\beta^{−\mathrm{1}\:} {is}\:{odd}\: \\ $$$$\Rightarrow\beta{o}\beta^{−\mathrm{1}} \:{is}\:{odd}\:\Rightarrow{sgn}\left(\beta{o}\beta^{−\mathrm{1}} \right)=−\mathrm{1},\:{a}\:{contradiction}. \\ $$$${Hence}\:\beta^{−\mathrm{1}\:} \:{is}\:{not}\:{odd} \\ $$$$\Rightarrow\beta^{−\mathrm{1}} \:{must}\:{be}\:{even}. \\ $$$$\Rightarrow{sgn}\left(\beta^{−\mathrm{1}} \right)=\mathrm{1}={sgn}\left(\beta\right)\:\:\: \\ $$$${Similar}\:{argument}\:{for}\:{odd}.\:\:\:\:\:\:\blacksquare \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by Mastermind last updated on 22/Jun/23
Thank you so much
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much} \\ $$
Commented by York12 last updated on 22/Jun/23
sir I am facing a lot of problems with combinatorics  what do you recommend to read
$${sir}\:{I}\:{am}\:{facing}\:{a}\:{lot}\:{of}\:{problems}\:{with}\:{combinatorics} \\ $$$${what}\:{do}\:{you}\:{recommend}\:{to}\:{read} \\ $$
Commented by Rajpurohith last updated on 22/Jun/23
I would better suggest you to study  one book properly as a course.
$$\boldsymbol{{I}}\:\boldsymbol{{would}}\:\boldsymbol{{better}}\:\boldsymbol{{suggest}}\:\boldsymbol{{you}}\:\boldsymbol{{to}}\:\boldsymbol{{study}} \\ $$$$\boldsymbol{{one}}\:\boldsymbol{{book}}\:\boldsymbol{{properly}}\:\boldsymbol{{as}}\:\boldsymbol{{a}}\:\boldsymbol{{course}}. \\ $$
Commented by talminator2856792 last updated on 23/Jun/23
  what book do you recommend.
$$\:\:\mathrm{what}\:\mathrm{book}\:\mathrm{do}\:\mathrm{you}\:\mathrm{recommend}.\:\: \\ $$
Commented by York12 last updated on 23/Jun/23
what book do you recommend sir
$${what}\:{book}\:{do}\:{you}\:{recommend}\:{sir} \\ $$$$ \\ $$
Commented by Rajpurohith last updated on 24/Jun/23
Actually I did not have a course in it,  But I ′d suggest the book “Introductory  Combinatorics” by Richard .A Brualdi.
$$\boldsymbol{{Actually}}\:\boldsymbol{{I}}\:\boldsymbol{{did}}\:\boldsymbol{{not}}\:\boldsymbol{{have}}\:\boldsymbol{{a}}\:\boldsymbol{{course}}\:\boldsymbol{{in}}\:\boldsymbol{{it}}, \\ $$$$\boldsymbol{{But}}\:\boldsymbol{{I}}\:'\boldsymbol{{d}}\:\boldsymbol{{suggest}}\:\boldsymbol{{the}}\:\boldsymbol{{book}}\:“\boldsymbol{{Introductory}} \\ $$$$\boldsymbol{{Combinatorics}}''\:\boldsymbol{{by}}\:\boldsymbol{{Richard}}\:.\boldsymbol{{A}}\:\boldsymbol{{Brualdi}}. \\ $$
Commented by York12 last updated on 23/Jul/23
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *