Menu Close

Question-193886




Question Number 193886 by Rupesh123 last updated on 22/Jun/23
Answered by MM42 last updated on 22/Jun/23
a=521(521^n −521^(n−1) +1)=521m  “521” is prime number.therefore “m”   must be a multiple “521”.  which is valid only for  “n=1”
a=521(521n521n1+1)=521m521isprimenumber.thereforemmustbeamultiple521.whichisvalidonlyforn=1
Commented by Rupesh123 last updated on 22/Jun/23
Perfect ��
Answered by Subhi last updated on 22/Jun/23
521((521−1)521^(n−1) +1)  521(521^n −521^(n−1) +1)  to be a perfect square  521^n −521^(n−1) +1 = 521^(2m+1)  , where m≥0                                                                                n≥1  or 521^n −521^(n−1) +1 = 521^(2k−1)  ,where k≤0                                                                                n≥1  521^(2m+1) −521^n +521^(n−1) =1  521(521^(2m) −521^(n−1) +521^(n−2) )=1  521^(2m) −521^(n−1) +521^(n−2)  = (1/(521))=(521)^(−1)   ∴ n−2≤0  ⇛ n≤2    n−1≤0      ⇛n≤1  m≤0  ∴ m = 0 , n = 1  521^(2k−1) +521^(n−1) −521^n =1  521(521^(2k−2) +521^(n−2) −521^(n−1) )=1  521^(2k−2) +521^(n−2) −521^(n−1)  = (1/(521))  n−1≤0  ⇛ n≤1 ⇛ n=1 ⇛ k = 1
521((5211)521n1+1)521(521n521n1+1)tobeaperfectsquare521n521n1+1=5212m+1,wherem0n1or521n521n1+1=5212k1,wherek0n15212m+1521n+521n1=1521(5212m521n1+521n2)=15212m521n1+521n2=1521=(521)1n20n2n10n1m0m=0,n=15212k1+521n1521n=1521(5212k2+521n2521n1)=15212k2+521n2521n1=1521n10n1n=1k=1
Commented by Rupesh123 last updated on 23/Jun/23
Perfect ��

Leave a Reply

Your email address will not be published. Required fields are marked *