Prove-that-lim-n-1-n-n-0-t-n-e-t-dt-1-2- Tinku Tara June 23, 2023 Coordinate Geometry 0 Comments FacebookTweetPin Question Number 193951 by Erico last updated on 23/Jun/23 Provethat:limn→+∞1n!∫0ntne−tdt=12 Answered by senestro last updated on 24/Jun/23 limn→+∞1n!∫0ntne−tdt=limn→+∞−e−t(1+t1!+t22!+…+tnn!)∣0n=limn→+∞−e−n(1+n1!+n22!+…+nnn!)+limn→+∞e−0(1+01!+022!+…+0nn!)=limn→+∞−e−n(1+n1!+n22!+…+nnn!)+lim1n→+∞(1)=limn→+∞−e−nen+lim1n→+∞=limn→+∞−1+lim1n→+∞=−1+1=0hencethequestioniswronglimn→+∞1n!∫0ntne−tdt=0butlimn→+∞1n!∫0∞tne−tdt=1andlimn→+∞12n!∫0∞tne−tdt=12 Answered by aba last updated on 24/Jun/23 limn→∞12n!∫0∞tne−tdt=limn→∞Γ(n+1)2n!=limn→∞n!2n!=12✓ Commented by Erico last updated on 26/Jun/23 Regarde:Posonsf(t)=tnn!e−t∀n∈N∫n2nf(t)dt=∫0nf(2n−t)dtor∫2nxf(t)dt=∫nx−n(u+n)n!e−u−nduoru⩾n⇒(u+n)nn!e−u−n⩽(2u)nn!e−u−n⇒Six⩾2n,∫nx−n(u+n)nn!e−u−ndu⩽(2e)n∫nx−nunn!e−udu⩽(2e)n∫0+∞unn!e−udu⩽(2e)ndonclimn→+∞1n!∫2n+∞une−udu=0⇒limn→+∞1n!∫02ntne−tdt=1⇒limn→+∞[1n!∫0ntne−tdt+1n!∫n2ntne−tdt]=1donclimn→+∞1n!∫0ntne−tdt≠0 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-193918Next Next post: y-x-2-x-R-y-Range- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.