Menu Close

Prove-that-lim-n-1-n-n-0-t-n-e-t-dt-1-2-




Question Number 193951 by Erico last updated on 23/Jun/23
Prove that:  lim_(n→+∞)  (1/(n!))∫^( n) _( 0) t^n e^(−t) dt = (1/2)
Provethat:limn+1n!0ntnetdt=12
Answered by senestro last updated on 24/Jun/23
lim_(n→+∞) (1/(n!))∫_0 ^( n) t^n e^(−t) dt=lim_(n→+∞) −e^(−t) (1+(t/(1!))+(t^2 /(2!))+...+(t^n /(n!)))∣_0 ^n                                           =lim_(n→+∞) −e^(−n) (1+(n/(1!))+(n^2 /(2!))+...+(n^n /(n!)))+lim_(n→+∞) e^(−0) (1+(0/(1!))+(0^2 /(2!))+...+(0^n /(n!)))                                          =lim_(n→+∞) −e^(−n) (1+(n/(1!))+(n^2 /(2!))+...+(n^n /(n!)))+lim_(n→+∞) 1(1)                                          =lim_(n→+∞) −e^(−n) e^n +lim_(n→+∞) 1                                          =lim_(n→+∞) −1+lim_(n→+∞) 1                                          =−1+1=0  hence the question is wrong  lim_(n→+∞) (1/(n!))∫_0 ^( n) t^n e^(−t) dt=0  but  lim_(n→+∞) (1/(n!))∫_0 ^( ∞) t^n e^(−t) dt=1  and  lim_(n→+∞) (1/(2n!))∫_0 ^( ∞) t^n e^(−t) dt=(1/2)
limn+1n!0ntnetdt=limn+et(1+t1!+t22!++tnn!)0n=limn+en(1+n1!+n22!++nnn!)+limn+e0(1+01!+022!++0nn!)=limn+en(1+n1!+n22!++nnn!)+lim1n+(1)=limn+enen+lim1n+=limn+1+lim1n+=1+1=0hencethequestioniswronglimn+1n!0ntnetdt=0butlimn+1n!0tnetdt=1andlimn+12n!0tnetdt=12
Answered by aba last updated on 24/Jun/23
lim_(n→∞) (1/(2n!))∫_0 ^∞ t^n e^(−t) dt=lim_(n→∞) ((Γ(n+1))/(2n!))=lim_(n→∞) ((n!)/(2n!))=(1/2) ✓
limn12n!0tnetdt=limnΓ(n+1)2n!=limnn!2n!=12
Commented by Erico last updated on 26/Jun/23
Regarde :   Posons f(t)= (t^n /(n!))e^(−t)    ∀n∈N     ∫^( 2n) _( n) f(t)dt=∫^( n) _( 0) f(2n−t)dt  or ∫_(2n) ^( x) f(t)dt = ∫^( x−n) _( n) (((u+n))/(n!))e^(−u−n) du   or u≥n ⇒ (((u+n)^n )/(n!))e^(−u−n)  ≤ (((2u)^n )/(n!))e^(−u−n)   ⇒Si x≥ 2n,      ∫^( x−n) _( n) (((u+n)^n )/(n!))e^(−u−n) du ≤ ((2/e))^n ∫^( x−n) _( n)   (u^n /(n!))e^(−u) du≤((2/e))^n ∫^( +∞) _( 0) (u^n /(n!))e^(−u) du                                                                           ≤ ((2/e))^n   donc lim_(n→+∞) (1/(n!))∫^(    +∞) _(      2n) u^n e^(−u) du=0   ⇒ lim_(n→+∞)  (1/(n!))∫^( 2n) _0 t^n e^(−t) dt=1  ⇒ lim_(n→+∞)  [(1/(n!))∫^( n) _( 0) t^n e^(−t) dt+(1/(n!))∫^( 2n) _( n) t^n e^(−t) dt]=1  donc  lim_(n→+∞)  (1/(n!))∫^( n) _( 0) t^n e^(−t) dt ≠0
Regarde:Posonsf(t)=tnn!etnNn2nf(t)dt=0nf(2nt)dtor2nxf(t)dt=nxn(u+n)n!eunduorun(u+n)nn!eun(2u)nn!eunSix2n,nxn(u+n)nn!eundu(2e)nnxnunn!eudu(2e)n0+unn!eudu(2e)ndonclimn+1n!2n+uneudu=0limn+1n!02ntnetdt=1limn+[1n!0ntnetdt+1n!n2ntnetdt]=1donclimn+1n!0ntnetdt0

Leave a Reply

Your email address will not be published. Required fields are marked *