Menu Close

a-b-c-are-positive-real-numbers-And-1-a-b-1-1-b-c-1-1-a-c-1-1-prove-that-a-b-c-ab-bc-ac-




Question Number 193965 by Subhi last updated on 24/Jun/23
a,b,c are positive real numbers  And  (1/(a+b+1))+(1/(b+c+1))+(1/(a+c+1))≥1  prove that a+b+c≥ab+bc+ac
a,b,carepositiverealnumbersAnd1a+b+1+1b+c+1+1a+c+11provethata+b+cab+bc+ac
Answered by Subhi last updated on 26/Jun/23
(a+b+1)(a+b+c^2 )≥(a+b+c)^2   (1/(a+b+1))≤((a+b+c^2 )/((a+b+c)^2 ))  (b+c+1)(b+c+a^2 )≥(b+c+a)^2   (1/(b+c+1))≤(((b+c+a^2 ))/((a+b+c)^2 ))  (a+c+1)(a+c+b^2 )≥(a+c+b)^2   (1/(a+c+1))≤(((a+c+b^2 ))/((a+b+c)^2 ))  Σ_(cyc) (1/(a+b+1))≤(1/((a+b+c)^2 ))(a^2 +b^2 +c^2 +2(a+b+c))  (1/((a+b+c)^2 ))(a^2 +b^2 +c^2 +2(a+b+c))≥1  (a+b+c)^2 −(a^2 +b^2 +c^2 )≤2(a+b+c)  2(ab+bc+ac)≤2(a+b+c)
(a+b+1)(a+b+c2)(a+b+c)21a+b+1a+b+c2(a+b+c)2(b+c+1)(b+c+a2)(b+c+a)21b+c+1(b+c+a2)(a+b+c)2(a+c+1)(a+c+b2)(a+c+b)21a+c+1(a+c+b2)(a+b+c)2cyc1a+b+11(a+b+c)2(a2+b2+c2+2(a+b+c))1(a+b+c)2(a2+b2+c2+2(a+b+c))1(a+b+c)2(a2+b2+c2)2(a+b+c)2(ab+bc+ac)2(a+b+c)
Answered by Subhi last updated on 26/Jun/23
(a+b+1)(ac^2 +a^2 b+b^2 c^2 )≥(ac+ab+bc)^2   (1/(a+b+1))≤((ac^2 +a^2 b+b^2 c^2 )/((ab+bc+ac)^2 ))  (b+c+1)(bc^2 +a^2 c+a^2 b^2 )≥(bc+ac+ab)^2   (1/(b+c+1))≤(((bc^2 +a^2 c+a^2 b^2 ))/((ab+bc+ac)^2 ))  (a+c+1)(ab^2 +b^2 c+a^2 c^2 )≥(ab+bc+ac)^2   (1/(a+c+1))≤(((ab^2 +bc^2 +a^2 c^2 ))/((ab+bc+ac)^2 ))  Σ_(cyc) (1/(a+b+1))≤(1/((ab+bc+ac)^2 ))(ac^2 +a^2 b+b^2 c^2 +bc^2 +a^2 c+a^2 b^2 +ab^2 +bc^2 +a^2 c^2 )  (a+b+c)(ab+bc+ac)=a^2 b+a^2 c+ab^2 +bc^2 +b^2 c+ac^2 +3abc  a^2 b^2 +b^2 c^2 +a^2 c^2  ¿ 3abc  Σ_(cyc) (1/2)a^2 b^2 +(1/2)a^2 b^2 +(1/2)b^2 c^2 +(1/2)b^2 c^2 ≥4^4 (√(((abc)^4 )/2^4 ))=2abc  2(a^2 b^2 +b^2 c^2 +a^2 c^2 ) ≥ 6abc  ∴ a^2 b^2 +b^2 c^2 +a^2 c^2  ≥ 3abc  ∴  (1/((ab+bc+ac)^2 ))(a+b+c)(ab+bc+ac)≥1  a+b+c≥ab+bc+ac
(a+b+1)(ac2+a2b+b2c2)(ac+ab+bc)21a+b+1ac2+a2b+b2c2(ab+bc+ac)2(b+c+1)(bc2+a2c+a2b2)(bc+ac+ab)21b+c+1(bc2+a2c+a2b2)(ab+bc+ac)2(a+c+1)(ab2+b2c+a2c2)(ab+bc+ac)21a+c+1(ab2+bc2+a2c2)(ab+bc+ac)2cyc1a+b+11(ab+bc+ac)2(ac2+a2b+b2c2+bc2+a2c+a2b2+ab2+bc2+a2c2)(a+b+c)(ab+bc+ac)=a2b+a2c+ab2+bc2+b2c+ac2+3abca2b2+b2c2+a2c2¿3abccyc12a2b2+12a2b2+12b2c2+12b2c244(abc)424=2abc2(a2b2+b2c2+a2c2)6abca2b2+b2c2+a2c23abc1(ab+bc+ac)2(a+b+c)(ab+bc+ac)1a+b+cab+bc+ac

Leave a Reply

Your email address will not be published. Required fields are marked *