Question Number 193975 by mr W last updated on 24/Jun/23
Commented by mr W last updated on 25/Jun/23
$${find}\:{the}\:{area}\:{of}\:{the}\:{hatched}\:{square}. \\ $$
Answered by mr W last updated on 25/Jun/23
Commented by mr W last updated on 25/Jun/23
$$\mathrm{cos}\:\alpha=\frac{\mathrm{7}^{\mathrm{2}} +\mathrm{9}^{\mathrm{2}} −\left(\sqrt{\mathrm{2}}{s}\right)^{\mathrm{2}} }{\mathrm{2}×\mathrm{7}×\mathrm{9}} \\ $$$$\mathrm{cos}\:\left(\beta+\gamma\right)=\frac{\mathrm{2}^{\mathrm{2}} +\mathrm{6}^{\mathrm{2}} −\left(\sqrt{\mathrm{2}}{s}\right)^{\mathrm{2}} }{\mathrm{2}×\mathrm{2}×\mathrm{6}}=−\mathrm{cos}\:\alpha \\ $$$$\Rightarrow\frac{\mathrm{2}^{\mathrm{2}} +\mathrm{6}^{\mathrm{2}} −\left(\sqrt{\mathrm{2}}{s}\right)^{\mathrm{2}} }{\mathrm{2}×\mathrm{2}×\mathrm{6}}=−\frac{\mathrm{7}^{\mathrm{2}} +\mathrm{9}^{\mathrm{2}} −\left(\sqrt{\mathrm{2}}{s}\right)^{\mathrm{2}} }{\mathrm{2}×\mathrm{7}×\mathrm{9}} \\ $$$$\Rightarrow{s}^{\mathrm{2}} =\frac{\mathrm{136}}{\mathrm{5}}={area}\:{of}\:{square} \\ $$
Answered by Subhi last updated on 25/Jun/23