Menu Close

Question-193976




Question Number 193976 by Risandu last updated on 25/Jun/23
Answered by Subhi last updated on 25/Jun/23
  lim_(x→1) (((^3 (√x)−1)^2 )/((x−1)^2 ))  lim_(x→1) (((^3 (√x)−1)^2 )/((^3 (√x)−1)^2 (^3 (√x^2 )+^3 (√x)+1)^2 )) ⇛ lim_(x→1) (1/((^3 (√x^2 )+^3 (√x)+1)^2 ))=(1/9)  or  lim_(x→1) (((2/3)x^((−1)/3) −(2/3)x^(−(2/3)) )/(2(x−1)))  {L Hopital′s law}  lim_(x→1) ((((−2)/9)x^((−4)/3) +(4/9)x^((−5)/3) )/2)=(1/9)
$$ \\ $$$${lim}_{{x}\rightarrow\mathrm{1}} \frac{\left(^{\mathrm{3}} \sqrt{{x}}−\mathrm{1}\right)^{\mathrm{2}} }{\left({x}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${lim}_{{x}\rightarrow\mathrm{1}} \frac{\left(^{\mathrm{3}} \sqrt{{x}}−\mathrm{1}\right)^{\mathrm{2}} }{\left(^{\mathrm{3}} \sqrt{{x}}−\mathrm{1}\right)^{\mathrm{2}} \left(^{\mathrm{3}} \sqrt{{x}^{\mathrm{2}} }+^{\mathrm{3}} \sqrt{{x}}+\mathrm{1}\right)^{\mathrm{2}} }\:\Rrightarrow\:{lim}_{{x}\rightarrow\mathrm{1}} \frac{\mathrm{1}}{\left(^{\mathrm{3}} \sqrt{{x}^{\mathrm{2}} }+^{\mathrm{3}} \sqrt{{x}}+\mathrm{1}\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{9}} \\ $$$${or} \\ $$$${lim}_{{x}\rightarrow\mathrm{1}} \frac{\frac{\mathrm{2}}{\mathrm{3}}{x}^{\frac{−\mathrm{1}}{\mathrm{3}}} −\frac{\mathrm{2}}{\mathrm{3}}{x}^{−\frac{\mathrm{2}}{\mathrm{3}}} }{\mathrm{2}\left({x}−\mathrm{1}\right)}\:\:\left\{{L}\:{Hopital}'{s}\:{law}\right\} \\ $$$${lim}_{{x}\rightarrow\mathrm{1}} \frac{\frac{−\mathrm{2}}{\mathrm{9}}{x}^{\frac{−\mathrm{4}}{\mathrm{3}}} +\frac{\mathrm{4}}{\mathrm{9}}{x}^{\frac{−\mathrm{5}}{\mathrm{3}}} }{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{9}} \\ $$
Answered by cortano12 last updated on 25/Jun/23
   L = [ lim_(x→1)  (((x)^(1/3)  −1)/(x−1)) ]^2      L = [ lim_(x→1)  (1/(((x)^(1/3)  )^2 +(x)^(1/3)  +1)) ]^2      L =  determinant (((1/9)))
$$\:\:\:\mathrm{L}\:=\:\left[\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{x}}\:−\mathrm{1}}{\mathrm{x}−\mathrm{1}}\:\right]^{\mathrm{2}} \\ $$$$\:\:\:\mathrm{L}\:=\:\left[\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\left(\sqrt[{\mathrm{3}}]{\mathrm{x}}\:\right)^{\mathrm{2}} +\sqrt[{\mathrm{3}}]{\mathrm{x}}\:+\mathrm{1}}\:\right]^{\mathrm{2}} \\ $$$$\:\:\:\mathrm{L}\:=\:\begin{array}{|c|}{\frac{\mathrm{1}}{\mathrm{9}}}\\\hline\end{array}\: \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *