Menu Close

Let-a-1-a-2-a-n-R-a-1-a-2-a-n-1-prove-that-a-1-2-a-1-a-2-2-a-2-a-n-2-a-n-n-2n-1-




Question Number 194037 by Subhi last updated on 26/Jun/23
  Let a_1 ,a_2 ....a_n ∈R^+ , a_1 +a_2 +.....a_n =1  prove that:  (a_1 /(2−a_1 ))+(a_2 /(2−a_2 )).......(a_n /(2−a_n ))≥(n/(2n−1))
Leta1,a2.anR+,a1+a2+..an=1provethat:a12a1+a22a2.an2ann2n1
Answered by AST last updated on 26/Jun/23
WLOG,Let a_1 ≥a_2 ≥...≥a_n   ⇒(1/(2−a_1 ))≥(1/(2−a_2 ))≥...≥(1/(2−a_n ))  Chebyshev⇒Σ(a/(2−a_1 ))≥(1/n)(Σa_1 )(Σ(1/(2−a_1 )))=(1/n)Σ((1/(2−a_1 )))  ≥(1/n)((n^2 /(2n−Σa_1 )))=(n/(2n−1))
WLOG,Leta1a2an12a112a212anChebyshevΣa2a11n(Σa1)(Σ12a1)=1nΣ(12a1)1n(n22nΣa1)=n2n1
Commented by Subhi last updated on 26/Jun/23
perfect
perfect
Answered by Subhi last updated on 26/Jun/23
Another solution  (a_1 ^2 /(2a_1 −a_1 ^2 ))+(a_2 ^2 /(2a_2 −a_2 ^2 ))......(a_n ^2 /(2a_n −a_n ^2 ))≥(((a_1 +a_2 ...a_n )^2 )/(2(a_1 +a_2 .....a_n )−(a_1 ^2 +a_2 ^2 ...a_n ^2 )))  ≥ (1/(2−(((a_1 +a_2 ....a_n )^2 )/n)))=(1/(2−(1/n)))=(n/(2n−1))
Anothersolutiona122a1a12+a222a2a22an22anan2(a1+a2an)22(a1+a2..an)(a12+a22an2)12(a1+a2.an)2n=121n=n2n1
Answered by witcher3 last updated on 26/Jun/23
f(x)=(1/(2−x)),f′(x)=(1/((2−x)^2 ))>0  f′′=(2/((2−x)^3 ))≥0  f convex  ⇒a_i f(a_i )≥f(Σa_i ^2 )...E  Quadratic Mean ⇒(((Σa_i ^2 )/n))^(1/2) ≥((Σa_i )/n)  Σa_i ^2 ≥(1/n)...f increase function ⇒f(Σa_i ^2 )≥f((1/n))  E⇒Σ_(i=1) ^n (a_i /(2−a_i ))≥f((1/n))=(n/(2n−1))
f(x)=12x,f(x)=1(2x)2>0f=2(2x)30fconvexaif(ai)f(Σai2)EQuadraticMeanΣai2n2ΣainΣai21nfincreasefunctionf(Σai2)f(1n)Eni=1ai2aif(1n)=n2n1
Commented by Subhi last updated on 26/Jun/23
nice! (jensen′s inequality)
nice!(jensensinequality)
Commented by witcher3 last updated on 27/Jun/23
thank You sir Yes
thankYousirYes

Leave a Reply

Your email address will not be published. Required fields are marked *