Menu Close

Question-194015




Question Number 194015 by Rupesh123 last updated on 26/Jun/23
Answered by witcher3 last updated on 26/Jun/23
let f(x)=Σ_(k≥1) f_k x^k   f_(k+1) =f_k +f_(k−1) ;f_1 =f_2 =1  f(x)=x+x^2 +Σ_(k≥2) f_(k+1) x^(k+1)   f(x)−x−x^2 =xΣ_(k≥2) (f_k +f_(k−1) )x^k   ⇔f(x)−x−x^2 =xΣ_(k≥2) f_k x^k +x^2 Σ_(k≥2) f_(k−1) x^(k−1)   ⇔f(x)−x−x^2 =x(f(x)−x)+x^2 f(x)  ⇔f(x)=(x/(1−x−x^2 ))  f((1/(10)))=Σ_(k≥1) (x^k /(10^k ))f_k ⇒(1/(10))f((1/(10)))=S=((1/(10))/(1−(1/(10))−(1/(100)))).(1/(10))  =(1/(89))
$$\mathrm{let}\:\mathrm{f}\left(\mathrm{x}\right)=\underset{\mathrm{k}\geqslant\mathrm{1}} {\sum}\mathrm{f}_{\mathrm{k}} \mathrm{x}^{\mathrm{k}} \\ $$$${f}_{{k}+\mathrm{1}} ={f}_{{k}} +{f}_{{k}−\mathrm{1}} ;\mathrm{f}_{\mathrm{1}} =\mathrm{f}_{\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}+\mathrm{x}^{\mathrm{2}} +\underset{\mathrm{k}\geqslant\mathrm{2}} {\sum}\mathrm{f}_{\mathrm{k}+\mathrm{1}} \mathrm{x}^{\mathrm{k}+\mathrm{1}} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)−\mathrm{x}−\mathrm{x}^{\mathrm{2}} =\mathrm{x}\underset{\mathrm{k}\geqslant\mathrm{2}} {\sum}\left(\mathrm{f}_{\mathrm{k}} +\mathrm{f}_{\mathrm{k}−\mathrm{1}} \right)\mathrm{x}^{\mathrm{k}} \\ $$$$\Leftrightarrow\mathrm{f}\left(\mathrm{x}\right)−\mathrm{x}−\mathrm{x}^{\mathrm{2}} =\mathrm{x}\underset{\mathrm{k}\geqslant\mathrm{2}} {\sum}\mathrm{f}_{\mathrm{k}} \mathrm{x}^{\mathrm{k}} +\mathrm{x}^{\mathrm{2}} \underset{\mathrm{k}\geqslant\mathrm{2}} {\sum}\mathrm{f}_{\mathrm{k}−\mathrm{1}} \mathrm{x}^{\mathrm{k}−\mathrm{1}} \\ $$$$\Leftrightarrow\mathrm{f}\left(\mathrm{x}\right)−\mathrm{x}−\mathrm{x}^{\mathrm{2}} =\mathrm{x}\left(\mathrm{f}\left(\mathrm{x}\right)−\mathrm{x}\right)+\mathrm{x}^{\mathrm{2}} \mathrm{f}\left(\mathrm{x}\right) \\ $$$$\Leftrightarrow\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{x}}{\mathrm{1}−\mathrm{x}−\mathrm{x}^{\mathrm{2}} } \\ $$$$\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{10}}\right)=\underset{\mathrm{k}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{x}^{\mathrm{k}} }{\mathrm{10}^{\mathrm{k}} }\mathrm{f}_{\mathrm{k}} \Rightarrow\frac{\mathrm{1}}{\mathrm{10}}\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{10}}\right)=\mathrm{S}=\frac{\frac{\mathrm{1}}{\mathrm{10}}}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{10}}−\frac{\mathrm{1}}{\mathrm{100}}}.\frac{\mathrm{1}}{\mathrm{10}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{89}} \\ $$
Commented by Rupesh123 last updated on 26/Jun/23
As required!

Leave a Reply

Your email address will not be published. Required fields are marked *