Menu Close

Question-194064




Question Number 194064 by Abdullahrussell last updated on 27/Jun/23
Answered by som(math1967) last updated on 27/Jun/23
i)×asecθ −ii)×((cosθ)/a)   ((ay)/b)tanθ +((by)/a)cotθ=asecθ−((cosθ)/a)+((b^2 cosθ)/a)  y(((a^2 tan^2 θ+b^2 )/(abtanθ)))=((a^2 (sec^2 θ−1)+b^2 )/(asecθ))   y(((a^2 tan^2 θ+b^2 )/(abtanθ)))=(((a^2 tan^2 θ+b^2 ))/(asecθ))   ⇒y=bsinθ  ∴ (y/b)=sinθ   putting y=bsinθ  in (i)   ((xcos θ)/a) +sin^2 θ=1  ⇒x=acosθ  ∴(x/a)=cosθ  ∴(x^2 /a^2 )+(y^2 /b^2 )=cos^2 θ+sin^2 θ=1
$$\left.{i}\left.\right)×{asec}\theta\:−{ii}\right)×\frac{{cos}\theta}{{a}} \\ $$$$\:\frac{{ay}}{{b}}{tan}\theta\:+\frac{{by}}{{a}}{cot}\theta={asec}\theta−\frac{{cos}\theta}{{a}}+\frac{{b}^{\mathrm{2}} {cos}\theta}{{a}} \\ $$$${y}\left(\frac{{a}^{\mathrm{2}} {tan}^{\mathrm{2}} \theta+{b}^{\mathrm{2}} }{{abtan}\theta}\right)=\frac{{a}^{\mathrm{2}} \left({sec}^{\mathrm{2}} \theta−\mathrm{1}\right)+{b}^{\mathrm{2}} }{{asec}\theta} \\ $$$$\:{y}\left(\frac{{a}^{\mathrm{2}} {tan}^{\mathrm{2}} \theta+{b}^{\mathrm{2}} }{{abtan}\theta}\right)=\frac{\left({a}^{\mathrm{2}} {tan}^{\mathrm{2}} \theta+{b}^{\mathrm{2}} \right)}{{asec}\theta} \\ $$$$\:\Rightarrow{y}={bsin}\theta \\ $$$$\therefore\:\frac{{y}}{{b}}={sin}\theta \\ $$$$\:{putting}\:{y}={bsin}\theta\:\:{in}\:\left({i}\right) \\ $$$$\:\frac{{x}\mathrm{cos}\:\theta}{{a}}\:+{sin}^{\mathrm{2}} \theta=\mathrm{1} \\ $$$$\Rightarrow{x}={acos}\theta \\ $$$$\therefore\frac{{x}}{{a}}={cos}\theta \\ $$$$\therefore\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }={cos}^{\mathrm{2}} \theta+{sin}^{\mathrm{2}} \theta=\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *