Menu Close

x-y-z-are-positive-real-numbers-if-x-4-y-4-z-4-1-Then-find-the-minimum-value-of-x-3-1-x-8-y-3-1-y-8-z-3-1-z-8-




Question Number 194105 by York12 last updated on 27/Jun/23
  x , y , z are positive real numbers if x^4 +y^4 +z^4 =1  Then find the minimum value of   (x^3 /(1−x^8 ))+(y^3 /(1−y^8 ))+(z^3 /(1−z^8 ))
x,y,zarepositiverealnumbersifx4+y4+z4=1Thenfindtheminimumvalueofx31x8+y31y8+z31z8
Answered by Subhi last updated on 27/Jun/23
put f(x) = (x^3 /(1−x^8 ))  f^′ (x) = ((3x^2 (1−x^8 )+8x^7 (x^3 ))/((1−x^8 )^2 )) at x = (1/(^4 (√3))) (value that achieves the equality)  f^′ ((1/(^4 (√3)))) = 2.598  y_f −y_0  = m(x_f −x_0 )  f(x) = 2.598(x−(1/(^4 (√3))))+((((1/(^4 (√3))))^3 )/(1−((1/(^4 (√3))))^8 ))  f(x) = 2.598x −1.48  according to tangent theorem  f(x)+f(y)+f(z) ≥ 2.589(x+y+z)−1.48×3   = 2.589((3/(^4 (√3))))−1.48×3 = 1.48 approx
putf(x)=x31x8f(x)=3x2(1x8)+8x7(x3)(1x8)2atx=143(valuethatachievestheequality)f(143)=2.598yfy0=m(xfx0)f(x)=2.598(x143)+(143)31(143)8f(x)=2.598x1.48accordingtotangenttheoremf(x)+f(y)+f(z)2.589(x+y+z)1.48×3=2.589(343)1.48×3=1.48approx
Commented by Frix last updated on 28/Jun/23
I think at x=y=z=3^(−(1/4))  the minimum is  3^(9/4) 2^(−3) ≈1.48058326457
Ithinkatx=y=z=314theminimumis394231.48058326457
Commented by York12 last updated on 28/Jun/23
thanks bro
thanksbro
Commented by York12 last updated on 28/Jun/23
sir I have sent you a friend request on  discord
sirIhavesentyouafriendrequestondiscord
Commented by York12 last updated on 28/Jun/23
Commented by York12 last updated on 28/Jun/23
Commented by York12 last updated on 28/Jun/23
sir I have sent you a friend request on   discord    please accept sir
sirIhavesentyouafriendrequestondiscordpleaseacceptsir
Answered by AST last updated on 28/Jun/23
≥(1/3)(x^3 +y^3 +z^3 )(Σ(1/(1−x^8 )))≥(1/3)(Σx^3 )((9/(3−Σx^8 )))  (Σ(x^8 /3))^(1/8) ≥(Σ(x^4 /3))^(1/4) =(1/( (3)^(1/4) ))⇒Σx^8 ≥(1/3)⇒−Σx^8 ≤−(1/3)  ⇒Σ(x^3 /(1−x^8 ))≥(1/3)(Σx^3 )(((27)/8))=(9/8)(Σx^3 )  It remains to find min(Σx^3 )... Use Lagrange multipliers  3x^2 =λ4x^3 ⇒3=4λx⇒λ=(3/(4x))⇒x=(3/(4λ))  ⇒((3×81)/(256λ^4 ))=1⇒λ=(((3×81)/(256)))^(1/4) =((3(3)^(1/4) )/4)⇒x=y=z=((3/1)/((3(3)^(1/4) )/1))=(1/( (3)^(1/4) ))  So,min(x^3 +y^3 +z^3 ) holds when x=y=z=(1/( (3)^(1/4) ))  ⇒min(x^3 +y^3 +z^3 )=(3/( ((27))^(1/4) ))  ⇒Σ(x^3 /(1−x^8 ))≥(9/8)×(3/( ((27))^(1/4) ))=(((27^3 ))^(1/4) /8)
13(x3+y3+z3)(Σ11x8)13(Σx3)(93Σx8)(Σx83)18(Σx43)14=134Σx813Σx813Σx31x813(Σx3)(278)=98(Σx3)Itremainstofindmin(Σx3)UseLagrangemultipliers3x2=λ4x33=4λxλ=34xx=34λ3×81256λ4=1λ=3×812564=3344x=y=z=313341=134So,min(x3+y3+z3)holdswhenx=y=z=134min(x3+y3+z3)=3274Σx31x898×3274=27348
Commented by York12 last updated on 28/Jun/23
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *